Welcome to the last joint SBML hackathon/annual BioModels meeting ...

(before the first HARMONY gathering next year)
A mosaic of standards in Systems Biology

<table>
<thead>
<tr>
<th></th>
<th>Models</th>
<th>Simulation</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data-models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ontologies</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Those standards build up on each other.
Similar efforts in other disciplines

- Toxicogenomics
- Neurosciences
- Physiology
- Systems biology
- FieldML
- NeuroML
-cellML
- SBML
- IMI DDMoRE
- SimileXML
- ecology and crop
The issues to tackle are trans-disciplinary
Non-overlapping languages

- NineML
- FieldML

- Global representation
- Tissue network
- Mechanics
- Morphology
- Process-based descriptions

SBML
NineML
FieldML
Multi-scale representation using adapters

NeuML

f(x,y,z) g(x,y,z)

h(x)

S8ML

cellML

Neuromodeling
Disentangling the level of discourse

Graphical representation

Biological semantics

Initial conditions

Model semantics (structure)

SBGN

BioPAX

SBML
Non-overlapping representation

Structure and Topology language
Activity Flow language
Entity Relationship language
Process Description language
Disentangling the model life-cycle

- PMML: model generation
- SBML: model description
- SED-ML: parameterisation
- SBRML: simulation and analysis
- PMML: numerical results
Web Design and Applications involve the standards for building and rendering Web pages, including HTML, CSS, SVG, Ajax, and other technologies for Web Applications (WebApps). This section also includes information on how to make pages accessible to people with disabilities (WCAG), internationalized, and work on mobile devices.

HTML & CSS
HTML and CSS are the fundamental technologies for building Web pages: HTML (and XHTML) for structure, CSS for style and layout. Find resources for good Web page design as well as helpful tools.

Scripting and Ajax
Standard APIs for client-side Web Application development include those for Geolocation, XMLHttpRequest (Ajax), and mobile widgets. W3C standards for document models (the "DOM") and technologies such as XBL allow content providers to create interactive documents through scripting.

Audio and Video
Some of the W3C formats that enable authoring audio and video presentations include HTML, SVG, and SMIL (for synchronization). W3C is also working on a timed text format for captioning and other applications.

Accessibility
W3C's Web Accessibility Initiative (WAI) has published Web Content Accessibility Guidelines (WCAG) to help authors create content that is accessible to people with disabilities. WAI-ARIA gives authors more tools to create accessible Web Applications by providing additional semantics about widgets and behaviors.

Mobile Web
W3C promotes "One Web" that is available on any device. W3C's Mobile Web Best Practices help authors understand how to.

Internationalization
W3C has a mission to design technology that works across cultures and languages. W3C standards such as HTML and XML are built on Unicode, for instance. In addition, W3C has published guidance for authors related to language tags bi-directional (bidi) text, and more.

Privacy
The Web is a powerful tool for communications and transactions of all sorts. It is important to consider privacy and security.

Math on the Web
Mathematics and formulas are used on the Web for business reports, educational materials and scientific research. W3C's
For computational modeling to become more widely used in biology, researchers must be able to exchange and share their results. The development and broad acceptance of common representation formats such as SBML is a crucial step in that direction, allowing researchers to exchange and build upon each other's work with greater ease and accuracy.

BioModels.net is another step: an international effort to
1) define agreed-upon standards for model curation
2) define agreed-upon vocabularies for annotating models, and
3) provide a free, centralized, publicly-accessible database of annotated models in SBML and other structured formats.

BioModels Database is a free, public repository of published quantitative models of biochemical and cellular systems. The models are curated to verify that they correspond to the reference publication and give the proper numerical results. Curation annotates the components of the models with terms from controlled vocabularies and links to external relevant data resources, allowing users to search accurately for the models they need and precisely identify their components.

MIRIAM

The Minimum Information Requested in the Annotation of Models (MIRIAM) is a proposed set of rules for curating quantitative models of biomedical systems. The rules define procedures for encoding and annotating models represented in machine-readable form. Their application will enable users to (a) have confidence that curated models are an accurate reflection of their associated reference description; (b) search collections of curated models with precision; (c) quickly identify the biological phenomena that a given curated model or model constituent represents; and (d) facilitate model reuse and composition into large subcellular models.

References

Acknowledgments

Funding for different aspects of the BioModels.net effort currently comes from the following organizations: the National Institute of General Medical Sciences (USA), grant GM079243-06S1, the International Joint Research Program of NEDO (Japan), DARPA BioComp Bio-SPICE (USA), the European Molecular Biology Laboratory (EMBL), the California Institute of Technology (USA), the Systems Biology Institute (Japan), and the University of Hertfordshire (UK).
The Next Step After Standard Formats

For computational modeling to become more widely used in biological research, researchers must be able to exchange and share their results. The development and broad acceptance of common model representation formats such as SBML is a crucial step in that direction, allowing researchers to exchange and build upon each other’s work with greater ease and accuracy.

The BioModels.net project is another step: an international effort to:

1. define agreed-upon standards for model curation
2. define agreed-upon vocabularies for annotating models with connections to biological data resources
3. provide a free, centralized, publicly-accessible database of annotated, computational models in SBML and other structured formats

Helping to Define Community Standards

To facilitate assembling useful collections of quantitative models of biological phenomena, it is crucial to establish standards for the vocabularies used in model annotations as well as criteria for minimum quality levels of those models. The BioModels.net project aims to bring together a community of interested researchers to address these issues. We are working towards defining these standards through white papers and process definitions. All of the products of our efforts are open and freely available through this site.

Standards and Processes Developed Hand-in-Hand with a New Database

The database component of BioModels.net is especially designed for working with annotated computational models: each model is carefully reviewed and augmented by human annotators on the BioModels.net team to add metadata linking the model elements to other biological databases and resources. The BioModels Database at the EBI system goes far beyond other collections of models by being a true database, featuring browsing, cross-referencing, searching, and facilities for visualization, exporting models in different formats, and remote API access.

Projects

The projects we are currently coordinating are:

- BioModels Database
- MIRIAM and the associated set of qualifiers and MIRIAM Resources
- SBO
A first step: common meetings

- January 2008: SBGN hackathon; BioModels DB; MIRIAM; SBO
- March 2009: SBML hackathon; BioModels DB; MIRIAM; SBO
- April 2009: CellML; SED-ML; SBGN hackathon
- NOW: SBML hackathon; BioModels DB; MIRIAM; SBO; SED-ML
- October 2010: 1st **COMBINE** MEETING with SBML; SBGN; BioPAX; SBO; MIRIAM

- From now on, two grouped annual meetings
 - **COMBINE** forum: presentation of support, discussion about future developments and collaboration etc.
 - **HARMONY** hackathon: developing support, writing specifications, tinkering with interoperability etc.
THE END