libSBML Python API  5.18.0
libsbml.Compartment Class Reference
Inheritance diagram for libsbml.Compartment:
[legend]

Detailed Description

An SBML compartment, where species are located.

A compartment in SBML represents a bounded space in which species are located. Compartments do not necessarily have to correspond to actual structures inside or outside of a biological cell.

It is important to note that although compartments are optional in the overall definition of Model, every species in an SBML model must be located in a compartment. This in turn means that if a model defines any species, the model must also define at least one compartment. The reason is simply that species represent physical things, and therefore must exist somewhere. Compartments represent the somewhere.

Compartment has one required attribute, 'id', to give the compartment a unique identifier by which other parts of an SBML model definition can refer to it. A compartment can also have an optional 'name' attribute of type string. Identifiers and names must be used according to the guidelines described in the SBML specifications.

Compartment also has an optional attribute 'spatialDimensions' that is used to indicate the number of spatial dimensions possessed by the compartment. Most modeling scenarios involve compartments with integer values of 'spatialDimensions' of 3 (i.e., a three-dimensional compartment, which is to say, a volume), or 2 (a two-dimensional compartment, a surface), or 1 (a one-dimensional compartment, a line). In SBML Level 3, the type of this attribute is float, there are no restrictions on the permitted values of the 'spatialDimensions' attribute, and there are no default values. In SBML Level 2, the value must be a positive integer, and the default value is 3; the permissible values in SBML Level 2 are 3, 2, 1, and 0 (for a point).

Another optional attribute on Compartment is 'size', representing the initial total size of that compartment in the model. The 'size' attribute must be a floating-point value and may represent a volume (if the compartment is a three-dimensional one), or an area (if the compartment is two-dimensional), or a length (if the compartment is one-dimensional). There is no default value of compartment size in SBML Level 2 or Level 3. In particular, a missing 'size' value does not imply that the compartment size is 1. (This is unlike the definition of compartment 'volume' in SBML Level 1.) When the compartment's 'spatialDimensions' attribute does not have a value of 0, a missing value of 'size' for a given compartment signifies that the value either is unknown, or to be obtained from an external source, or determined by an InitialAssignment, AssignmentRule, AlgebraicRule or RateRule object elsewhere in the model. In SBML Level 2, there are additional special requirements on the values of 'size'; we discuss them in a separate section below.

The units associated with a compartment's 'size' attribute value may be set using the optional attribute 'units'. The rules for setting and using compartment size units differ between SBML Level 2 and Level 3, and are discussed separately below.

Finally, the Compartment attribute named 'constant' is used to indicate whether the compartment's size stays constant after simulation begins. A value of True indicates the compartment's 'size' cannot be changed by any other construct except InitialAssignment; a value of False indicates the compartment's 'size' can be changed by other constructs in SBML. In SBML Level 2, there is an additional explicit restriction that if 'spatialDimensions'='0', the value cannot be changed by InitialAssignment either. Further, in Level 2, 'constant' is optional, and has a default value of True. In SBML Level 3, there is no default value for the 'constant' attribute, and it is required.

Additional considerations in SBML Level 2

In SBML Level 2, the default units of compartment size, and the kinds of units allowed as values of the attribute 'units', interact with the number of spatial dimensions of the compartment. The value of the 'units' attribute of a Compartment object must be one of the base units (see Unit), or the predefined unit identifiers volume, area, length or dimensionless, or a new unit defined by a UnitDefinition object in the enclosing Model, subject to the restrictions detailed in the following table:

Restrictions on values permitted for compartment size and units attributes.
Value of
spatialDimensions
size
allowed?
units
allowed?
Allowable kinds of units Default value of attribute units
3 yes yes units of volume, or dimensionless volume
2 yes yes units of area, or dimensionless area
1 yes yes units of length, or dimensionless length
0 no no (no units allowed)

In SBML Level 2, the units of the compartment size, as defined by the 'units' attribute or (if 'units' is not set) the default value listed in the table above, are used in the following ways when the compartment has a 'spatialDimensions' value greater than 0:

  • The value of the 'units' attribute is used as the units of the compartment identifier when the identifier appears as a numerical quantity in a mathematical formula expressed in MathML.

  • The math element of an AssignmentRule or InitialAssignment referring to this compartment must (in Level 2 Versions 1-3) or should (in Level 2 Version 4) have identical units.

  • In RateRule objects that set the rate of change of the compartment's size, the units of the rule's math element must (in Level 2 Versions 1–3) or should (in Level 2 Version 4) be identical to the compartment's units (whether defined by the 'units' attribute or by taking the default value from the Model) divided by the default time units. (In other words, the units for the rate of change of compartment size are compartment size/time units.

  • When a Species is to be treated in terms of concentrations or density, the units of the spatial size portion of the concentration value (i.e., the denominator in the units formula substance/size) are those indicated by the value of the 'units' attribute on the compartment in which the species is located.

Compartments with 'spatialDimensions'=0 require special treatment in this framework. As implied above, the 'size' attribute must not have a value on an SBML Level 2 Compartment object if the 'spatialDimensions' attribute has a value of 0. An additional related restriction is that the 'constant' attribute must default to or be set to True if the value of the 'spatialDimensions' attribute is 0, because a zero-dimensional compartment cannot ever have a size.

If a compartment has no size or dimensional units, how should such a compartment's identifier be interpreted when it appears in mathematical formulas? The answer is that such a compartment's identifier should not appear in mathematical formulas in the first place—it has no value, and its value cannot change. Note also that a zero-dimensional compartment is a point, and species located at points can only be described in terms of amounts, not spatially-dependent measures such as concentration. Since SBML KineticLaw formulas are already in terms of substance/time and not (say) concentration/time, volume or other factors in principle are not needed for species located in zero-dimensional compartments.

Finally, in SBML Level 2 Versions 2–4, each compartment in a model may optionally be designated as belonging to a particular compartment type. The optional attribute 'compartmentType' is used identify the compartment type represented by the Compartment structure. The 'compartmentType' attribute's value must be the identifier of a CompartmentType instance defined in the model. If the 'compartmentType' attribute is not present on a particular compartment definition, a unique virtual compartment type is assumed for that compartment, and no other compartment can belong to that compartment type. The values of 'compartmentType' attributes on compartments have no effect on the numerical interpretation of a model. Simulators and other numerical analysis software may ignore 'compartmentType' attributes. The 'compartmentType' attribute and the CompartmentType class of objects are not present in SBML Level 3 Core nor in SBML Level 1.

Additional considerations in SBML Level 3

One difference between SBML Level 3 and lower Levels of SBML is that there are no restrictions on the permissible values of the 'spatialDimensions' attribute, and there is no default value defined for the attribute. The value of 'spatialDimensions' does not have to be an integer, either; this is to allow for the possibility of representing structures with fractal dimensions.

The number of spatial dimensions possessed by a compartment cannot enter into mathematical formulas, and therefore cannot directly alter the numerical interpretation of a model. However, the value of 'spatialDimensions' does affect the interpretation of the units associated with a compartment's size. Specifically, the value of 'spatialDimensions' is used to select among the Model attributes 'volumeUnits', 'areaUnits' and 'lengthUnits' when a Compartment structure does not define a value for its 'units' attribute.

The 'units' attribute may be left unspecified for a given compartment in a model; in that case, the compartment inherits the unit of measurement specified by one of the attributes on the enclosing Model object instance. The applicable attribute on Model depends on the value of the compartment's 'spatialDimensions' attribute; the relationship is shown in the table below. If the Model object does not define the relevant attribute ('volumeUnits', 'areaUnits' or 'lengthUnits') for a given 'spatialDimensions' value, the unit associated with that Compartment object's size is undefined. If a given Compartment's 'units' are left unset and the 'spatialDimensions' either has a value other than 1, 2, or 3 or is left unset itself (as it has no default value), then no unit can be chosen from among the Model's 'volumeUnits', 'areaUnits' or 'lengthUnits' attributes (even if the Model instance provides values for those attributes), because there is no basis to select between them. Leaving the units of compartments' sizes undefined in an SBML model does not render the model invalid; however, as a matter of best practice, we strongly recommend that all models specify the units of measurement for all compartment sizes.

Interpretation of the Compartment 'units' attribute.
Value of attribute
'spatialDimensions'
Attribute of Model used
for inheriting the unit
Recommended candidate units
3 "volumeUnits" units of volume, or dimensionless
2 "areaUnits" units of area, or dimensionless
1 "lengthUnits" units of length, or dimensionless
other no units inherited no specific recommendations

The unit of measurement associated with a compartment's size, as defined by the 'units' attribute or (if 'units' is not set) the inherited value from Model according to the table above, is used in the following ways:

  • When the identifier of the compartment appears as a numerical quantity in a mathematical formula expressed in MathML, it represents the size of the compartment, and the unit associated with the size is the value of the 'units' attribute.

  • When a Species is to be treated in terms of concentrations or density, the unit associated with the spatial size portion of the concentration value (i.e., the denominator in the formula amount/size) is specified by the value of the 'units' attribute on the compartment in which the species is located.

  • The 'math' elements of AssignmentRule, InitialAssignment and EventAssignment objects setting the value of the compartment size should all have the same units as the unit associated with the compartment's size.

  • In a RateRule object that defines a rate of change for a compartment's size, the unit of the rule's 'math' element should be identical to the compartment's 'units' attribute divided by the model-wide unit of time. (In other words, {unit of compartment size}/{unit of time}.)

Other aspects of Compartment

In SBML Level 1 and Level 2, Compartment has an optional attribute named 'outside', whose value can be the identifier of another Compartment object defined in the enclosing Model object. Doing so means that the other compartment contains it or is outside of it. This enables the representation of simple topological relationships between compartments, for those simulation systems that can make use of the information (e.g., for drawing simple diagrams of compartments). It is worth noting that in SBML, there is no relationship between compartment sizes when compartment positioning is expressed using the 'outside' attribute. The size of a given compartment does not in any sense include the sizes of other compartments having it as the value of their 'outside' attributes. In other words, if a compartment B has the identifier of compartment A as its 'outside' attribute value, the size of A does not include the size of B. The compartment sizes are separate.

In Level 2, there are two restrictions on the 'outside' attribute. First, because a compartment with 'spatialDimensions' of 0 has no size, such a compartment cannot act as the container of any other compartment except compartments that also have 'spatialDimensions' values of 0. Second, the directed graph formed by representing Compartment structures as vertexes and the 'outside' attribute values as edges must be acyclic. The latter condition is imposed to prevent a compartment from being contained inside itself. In the absence of a value for 'outside', compartment definitions in SBML Level 2 do not have any implied spatial relationships between each other.

Public Member Functions

def __init__ (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def addCVTerm (self, term, newBag=False)
 Adds a copy of the given CVTerm object to this SBML object. More...
 
def appendAnnotation (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def appendNotes (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def clone (self)
 Creates and returns a deep copy of this Compartment object. More...
 
def connectToChild (self)
 
def deleteDisabledPlugins (self, recursive=True)
 Deletes all information stored in disabled plugins. More...
 
def disablePackage (self, pkgURI, pkgPrefix)
 Disables the given SBML Level 3 package on this object. More...
 
def enablePackage (self, pkgURI, pkgPrefix, flag)
 Enables or disables the given SBML Level 3 package on this object. More...
 
def getAncestorOfType (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def getAnnotation (self, args)
 Returns the content of the 'annotation' subelement of this object as a tree of XMLNode objects. More...
 
def getAnnotationString (self, args)
 Returns the content of the 'annotation' subelement of this object as a character string. More...
 
def getColumn (self)
 Returns the column number where this object first appears in the XML representation of the SBML document. More...
 
def getCompartmentType (self)
 Get the value of the 'compartmentType' attribute of this Compartment object. More...
 
def getConstant (self)
 Get the value of the 'constant' attribute of this Compartment object. More...
 
def getCVTerm (self, n)
 Returns the nth CVTerm in the list of CVTerms of this SBML object. More...
 
def getCVTerms (self, args)
 Returns a list of CVTerm objects in the annotations of this SBML object. More...
 
def getDerivedUnitDefinition (self, args)
 Constructs and returns a UnitDefinition that corresponds to the units of this Compartment object's designated size. More...
 
def getDisabledPlugin (self, args)
 Returns the nth disabled plug-in object (extension interface) for an SBML Level 3 package extension. More...
 
def getElementByMetaId (self, args)
 Returns the first child element it can find with a specific 'metaid' attribute value, or None if no such object is found. More...
 
def getElementBySId (self, args)
 Returns the first child element found that has the given id in the model-wide SId namespace, or None if no such object is found. More...
 
def getElementName (self)
 Returns the XML element name of this object. More...
 
def getId (self)
 Returns the value of the 'id' attribute of this Compartment. More...
 
def getIdAttribute (self)
 Returns the value of the 'id' attribute of this SBML object. More...
 
def getLevel (self)
 Returns the SBML Level of the SBMLDocument object containing this object. More...
 
def getLine (self)
 Returns the line number where this object first appears in the XML representation of the SBML document. More...
 
def getListOfAllElements (self, filter=None)
 Returns an SBaseList of all child SBase objects, including those nested to an arbitrary depth. More...
 
def getListOfAllElementsFromPlugins (self, filter=None)
 Returns a List of all child SBase objects contained in SBML package plug-ins. More...
 
def getMetaId (self)
 Returns the value of the 'metaid' attribute of this SBML object. More...
 
def getModel (self)
 Returns the Model object for the SBML Document in which the current object is located. More...
 
def getModelHistory (self, args)
 Returns the ModelHistory object, if any, attached to this object. More...
 
def getName (self)
 Returns the value of the 'name' attribute of this Compartment object. More...
 
def getNamespaces (self)
 Returns a list of the XML Namespaces declared on the SBML document owning this object. More...
 
def getNotes (self, args)
 Returns the content of the 'notes' subelement of this object as a tree of XMLNode objects. More...
 
def getNotesString (self, args)
 Returns the content of the 'notes' subelement of this object as a string. More...
 
def getNumCVTerms (self)
 Returns the number of CVTerm objects in the annotations of this SBML object. More...
 
def getNumDisabledPlugins (self)
 Returns the number of disabled plug-in objects (extension interfaces) for SBML Level 3 package extensions known. More...
 
def getNumPlugins (self)
 Returns the number of plug-in objects (extenstion interfaces) for SBML Level 3 package extensions known. More...
 
def getOutside (self)
 Get the identifier, if any, of the Compartment object that is designated as being outside of this one. More...
 
def getPackageCoreVersion (self)
 Returns the SBML Core Version within the SBML Level of the actual object. More...
 
def getPackageName (self)
 Returns the name of the SBML Level 3 package in which this element is defined. More...
 
def getPackageVersion (self)
 Returns the Version of the SBML Level 3 package to which this element belongs to. More...
 
def getParentSBMLObject (self, args)
 Returns the parent SBML object containing this object. More...
 
def getPlugin (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def getPrefix (self)
 Returns the XML namespace prefix of this element. More...
 
def getResourceBiologicalQualifier (self, resource)
 Returns the MIRIAM biological qualifier associated with the given resource. More...
 
def getResourceModelQualifier (self, resource)
 Returns the MIRIAM model qualifier associated with the given resource. More...
 
def getSBMLDocument (self, args)
 Returns the SBMLDocument object containing this object instance. More...
 
def getSBOTerm (self)
 Returns the integer portion of the value of the 'sboTerm' attribute of this object. More...
 
def getSBOTermAsURL (self)
 Returns the URL representation of the 'sboTerm' attribute of this object. More...
 
def getSBOTermID (self)
 Returns the string representation of the 'sboTerm' attribute of this object. More...
 
def getSize (self)
 Get the size of this Compartment object. More...
 
def getSpatialDimensions (self)
 Get the number of spatial dimensions of this Compartment object. More...
 
def getSpatialDimensionsAsDouble (self)
 Get the number of spatial dimensions of this Compartment object, as a float. More...
 
def getTypeCode (self)
 Returns the libSBML type code for this SBML object. More...
 
def getUnits (self)
 Get the units of this Compartment object's size. More...
 
def getURI (self)
 Gets the namespace URI to which this element belongs to. More...
 
def getVersion (self)
 Returns the Version within the SBML Level of the SBMLDocument object containing this object. More...
 
def getVolume (self)
 Get the volume of this Compartment object. More...
 
def hasRequiredAttributes (self)
 Predicate returning True if all the required attributes for this Compartment object have been set. More...
 
def hasValidLevelVersionNamespaceCombination (self)
 Predicate returning true if this object's level/version and namespace values correspond to a valid SBML specification. More...
 
def initDefaults (self)
 Initializes the fields of this Compartment object to 'typical' default values. More...
 
def isPackageEnabled (self, pkgName)
 Predicate returning True if the given SBML Level 3 package is enabled with this object. More...
 
def isPackageURIEnabled (self, pkgURI)
 Predicate returning True if an SBML Level 3 package with the given URI is enabled with this object. More...
 
def isPkgEnabled (self, pkgName)
 Predicate returning True if the given SBML Level 3 package is enabled with this object. More...
 
def isPkgURIEnabled (self, pkgURI)
 Predicate returning True if an SBML Level 3 package with the given URI is enabled with this object. More...
 
def isSetAnnotation (self)
 Predicate returning True if this object's 'annotation' subelement exists and has content. More...
 
def isSetCompartmentType (self)
 Predicate returning True if this Compartment object's 'compartmentType' attribute is set. More...
 
def isSetConstant (self)
 Predicate returning True if this Compartment object's 'constant' attribute is set. More...
 
def isSetId (self)
 Predicate returning True if this Compartment object's 'id' attribute is set. More...
 
def isSetIdAttribute (self)
 Predicate returning True if this object's 'id' attribute is set. More...
 
def isSetMetaId (self)
 Predicate returning True if this object's 'metaid' attribute is set. More...
 
def isSetModelHistory (self)
 Predicate returning True if this object has a ModelHistory object attached to it. More...
 
def isSetName (self)
 Predicate returning True if this Compartment object's 'name' attribute is set. More...
 
def isSetNotes (self)
 Predicate returning True if this object's 'notes' subelement exists and has content. More...
 
def isSetOutside (self)
 Predicate returning True if this Compartment object's 'outside' attribute is set. More...
 
def isSetSBOTerm (self)
 Predicate returning True if this object's 'sboTerm' attribute is set. More...
 
def isSetSize (self)
 Predicate returning True if this Compartment object's 'size' attribute is set. More...
 
def isSetSpatialDimensions (self)
 Predicate returning True if this Compartment object's 'spatialDimensions' attribute is set. More...
 
def isSetUnits (self)
 Predicate returning True if this Compartment object's 'units' attribute is set. More...
 
def isSetUserData (self)
 Predicate returning true or false depending on whether the user data of this element has been set. More...
 
def isSetVolume (self)
 Predicate returning True if this Compartment object's 'volume' attribute is set. More...
 
def matchesRequiredSBMLNamespacesForAddition (self, args)
 Returns True if this object's set of XML namespaces are a subset of the given object's XML namespaces. More...
 
def matchesSBMLNamespaces (self, args)
 Returns True if this object's set of XML namespaces are the same as the given object's XML namespaces. More...
 
def removeFromParentAndDelete (self)
 Removes this object from its parent. More...
 
def removeTopLevelAnnotationElement (self, args)
 Removes the top-level element within the 'annotation' subelement of this SBML object with the given name and optional URI. More...
 
def renameMetaIdRefs (self, oldid, newid)
 Replaces all uses of a given meta identifier attribute value with another value. More...
 
def renameSIdRefs (self, oldid, newid)
 Replaces all uses of a given SIdRef type attribute value with another value. More...
 
def renameUnitSIdRefs (self, oldid, newid)
 Replaces all uses of a given UnitSIdRef type attribute value with another value. More...
 
def replaceTopLevelAnnotationElement (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def setAnnotation (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def setCompartmentType (self, sid)
 Sets the 'compartmentType' attribute of this Compartment object. More...
 
def setConstant (self, value)
 Sets the value of the 'constant' attribute of this Compartment object. More...
 
def setId (self, sid)
 Sets the value of the 'id' attribute of this Compartment object. More...
 
def setIdAttribute (self, sid)
 Sets the value of the 'id' attribute of this SBML object. More...
 
def setMetaId (self, metaid)
 Sets the value of the meta-identifier attribute of this SBML object. More...
 
def setModelHistory (self, history)
 Sets the ModelHistory of this object. More...
 
def setName (self, name)
 Sets the value of the 'name' attribute of this Compartment object. More...
 
def setNamespaces (self, xmlns)
 Sets the namespaces relevant of this SBML object. More...
 
def setNotes (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def setOutside (self, sid)
 Sets the 'outside' attribute of this Compartment object. More...
 
def setSBOTerm (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def setSize (self, value)
 Sets the 'size' attribute (or 'volume' in SBML Level 1) of this Compartment object. More...
 
def setSpatialDimensions (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def setUnits (self, sid)
 Sets the 'units' attribute of this Compartment object. More...
 
def setVolume (self, value)
 Sets the 'volume' attribute (or 'size' in SBML Level 2) of this Compartment object. More...
 
def toSBML (self)
 Returns a string consisting of a partial SBML corresponding to just this object. More...
 
def toXMLNode (self)
 Returns this element as an XMLNode. More...
 
def unsetAnnotation (self)
 Unsets the value of the 'annotation' subelement of this SBML object. More...
 
def unsetCompartmentType (self)
 Unsets the value of the 'compartmentType' attribute of this Compartment object. More...
 
def unsetConstant (self)
 Unsets the value of the 'constant' attribute of this Compartment object. More...
 
def unsetCVTerms (self)
 Clears the list of CVTerm objects attached to this SBML object. More...
 
def unsetId (self)
 Unsets the value of the 'id' attribute of this SBML object. More...
 
def unsetIdAttribute (self)
 Unsets the value of the 'id' attribute of this SBML object. More...
 
def unsetMetaId (self)
 Unsets the value of the 'metaid' attribute of this SBML object. More...
 
def unsetModelHistory (self)
 Unsets the ModelHistory object attached to this object. More...
 
def unsetName (self)
 Unsets the value of the 'name' attribute of this Compartment object. More...
 
def unsetNotes (self)
 Unsets the value of the 'notes' subelement of this SBML object. More...
 
def unsetOutside (self)
 Unsets the value of the 'outside' attribute of this Compartment object. More...
 
def unsetSBOTerm (self)
 Unsets the value of the 'sboTerm' attribute of this SBML object. More...
 
def unsetSize (self)
 Unsets the value of the 'size' attribute of this Compartment object. More...
 
def unsetSpatialDimensions (self)
 Unsets the value of the 'spatialDimensions' attribute of this Compartment object. More...
 
def unsetUnits (self)
 Unsets the value of the 'units' attribute of this Compartment object. More...
 
def unsetUserData (self)
 Unsets the user data of this element. More...
 
def unsetVolume (self)
 Unsets the value of the 'volume' attribute of this Compartment object. More...
 

Constructor & Destructor Documentation

def libsbml.Compartment.__init__ (   self,
  args 
)

This method has multiple variants; they differ in the arguments they accept.

__init__(long  level, long  version)   Compartment
__init__(SBMLNamespaces sbmlns)   Compartment
__init__(Compartment orig)   Compartment

Each variant is described separately below.


Method variant with the following signature:
Compartment(SBMLNamespaces sbmlns)

Creates a new Compartment object using the given SBMLNamespaces object sbmlns.

The SBMLNamespaces object encapsulates SBML Level/Version/namespaces information. It is used to communicate the SBML Level, Version, and (in Level 3) packages used in addition to SBML Level 3 Core. A common approach to using libSBML's SBMLNamespaces facilities is to create an SBMLNamespaces object somewhere in a program once, then hand that object as needed to object constructors that accept SBMLNamespaces as arguments.

It is worth emphasizing that although this constructor does not take an identifier argument, in SBML Level 2 and beyond, the 'id' (identifier) attribute of a Compartment object is required to have a value. Thus, callers are cautioned to assign a value after calling this constructor. Setting the identifier can be accomplished using the method setId().

Parameters
sbmlnsan SBMLNamespaces object.
Exceptions
ValueErrorThrown if the given sbmlns is inconsistent or incompatible with this object.
Note
Attempting to add an object to an SBMLDocument having a different combination of SBML Level, Version and XML namespaces than the object itself will result in an error at the time a caller attempts to make the addition. A parent object must have compatible Level, Version and XML namespaces. (Strictly speaking, a parent may also have more XML namespaces than a child, but the reverse is not permitted.) The restriction is necessary to ensure that an SBML model has a consistent overall structure. This requires callers to manage their objects carefully, but the benefit is increased flexibility in how models can be created by permitting callers to create objects bottom-up if desired. In situations where objects are not yet attached to parents (e.g., SBMLDocument), knowledge of the intented SBML Level and Version help libSBML determine such things as whether it is valid to assign a particular value to an attribute.

Method variant with the following signature:
Compartment(long level, long version)

Creates a new Compartment object using the given SBML level and version values.

Parameters
levela long integer, the SBML Level to assign to this Compartment.
versiona long integer, the SBML Version to assign to this Compartment.
Exceptions
ValueErrorThrown if the given level and version combination are invalid or if this object is incompatible with the given level and version.
Note
Attempting to add an object to an SBMLDocument having a different combination of SBML Level, Version and XML namespaces than the object itself will result in an error at the time a caller attempts to make the addition. A parent object must have compatible Level, Version and XML namespaces. (Strictly speaking, a parent may also have more XML namespaces than a child, but the reverse is not permitted.) The restriction is necessary to ensure that an SBML model has a consistent overall structure. This requires callers to manage their objects carefully, but the benefit is increased flexibility in how models can be created by permitting callers to create objects bottom-up if desired. In situations where objects are not yet attached to parents (e.g., SBMLDocument), knowledge of the intented SBML Level and Version help libSBML determine such things as whether it is valid to assign a particular value to an attribute.

Method variant with the following signature:
Compartment(Compartment orig)

Copy constructor.

This creates a copy of a Compartment object.

Parameters
origthe Compartment instance to copy.

Member Function Documentation

def libsbml.SBase.addCVTerm (   self,
  term,
  newBag = False 
)
inherited

Adds a copy of the given CVTerm object to this SBML object.

addCVTerm(CVTerm term, bool newBag)   int
addCVTerm(CVTerm term)   int
Parameters
termthe CVTerm to assign.
newBagif True, creates a new RDF bag with the same identifier as a previous bag, and if False, adds the term to an existing RDF bag with the same type of qualifier as the term being added.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
Since the CV Term uses the 'metaid' attribute of the object as a reference, if the object has no 'metaid' attribute value set, then the CVTerm will not be added.
This method should be used with some caution. The fact that this method copies the object passed to it means that the caller will be left holding a physically different object instance than the one contained inside this object. Changes made to the original object instance (such as resetting attribute values) will not affect the instance in this object. In addition, the caller should make sure to free the original object if it is no longer being used, or else a memory leak will result. Please see other methods on this class (particularly a corresponding method whose name begins with the word create) for alternatives that do not lead to these issues.
Owing to the way that language interfaces are created in libSBML, this documentation may show methods that define default values for parameters with text that has the form parameter = value. This is not to be intepreted as a Python keyword argument; the use of a parameter name followed by an equals sign followed by a value is only meant to indicate a default value if the argument is not provided at all. It is not a keyword in the Python sense.
def libsbml.SBase.appendAnnotation (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

appendAnnotation(XMLNode annotation)   int
appendAnnotation(string annotation)   int

Each variant is described separately below.


Method variant with the following signature:
appendAnnotation(XMLNode annotation)

Appends the given annotation to the 'annotation' subelement of this object.

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Unlike SBase.setAnnotation() or SBase.setAnnotation(), this method allows other annotations to be preserved when an application adds its own data.

Parameters
annotationan XML structure that is to be copied and appended to the content of the 'annotation' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getAnnotationString()
isSetAnnotation()
setAnnotation()
setAnnotation()
appendAnnotation()
unsetAnnotation()

Method variant with the following signature:
appendAnnotation(string annotation)

Appends the given annotation to the 'annotation' subelement of this object.

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Unlike SBase.setAnnotation() or SBase.setAnnotation(), this method allows other annotations to be preserved when an application adds its own data.

Parameters
annotationan XML string that is to be copied and appended to the content of the 'annotation' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getAnnotationString()
isSetAnnotation()
setAnnotation()
setAnnotation()
appendAnnotation()
unsetAnnotation()
def libsbml.SBase.appendNotes (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

appendNotes(XMLNode notes)   int
appendNotes(string notes)   int

Each variant is described separately below.


Method variant with the following signature:
appendNotes(string notes)

Appends the given notes to the 'notes' subelement of this object.

The content of the parameter notes is copied.

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

Parameters
notesan XML string that is to appended to the content of the 'notes' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getNotesString()
isSetNotes()
setNotes()
setNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()

Method variant with the following signature:
appendNotes(XMLNode notes)

Appends the given notes to the 'notes' subelement of this object.

The content of notes is copied.

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

Parameters
notesan XML node structure that is to appended to the content of the 'notes' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getNotesString()
isSetNotes()
setNotes()
setNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.Compartment.clone (   self)

Creates and returns a deep copy of this Compartment object.

clone()   Compartment
Returns
the (deep) copy of this Compartment object.
def libsbml.SBase.connectToChild (   self)
inherited
connectToChild()
def libsbml.SBase.deleteDisabledPlugins (   self,
  recursive = True 
)
inherited

Deletes all information stored in disabled plugins.

deleteDisabledPlugins(bool recursive)
deleteDisabledPlugins()

If the plugin is re-enabled later, it will then not have any previously-stored information.

SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
If a plugin is disabled, the package information it contains is no longer considered to be part of the SBML document for the purposes of searching the document or writing out the document. However, the information is still retained, so if the plugin is enabled again, the same information will once again be available, and will be written out to the final model.
Parameters
recursiveif True, the disabled information will be deleted also from all child elements, otherwise only from this SBase element.
See also
getNumDisabledPlugins()
def libsbml.SBase.disablePackage (   self,
  pkgURI,
  pkgPrefix 
)
inherited

Disables the given SBML Level 3 package on this object.

disablePackage(string pkgURI, string pkgPrefix)   int

This method disables the specified package on this object and other objects connected by child-parent links in the same SBMLDocument object.

An example of when this may be useful is during construction of model components when mixing existing and new models. Suppose your application read an SBML document containing a model that used the SBML Hierarchical Model Composition (“comp”) package, and extracted parts of that model in order to construct a new model in memory. The new, in-memory model will not accept a component drawn from an other SBMLDocument with different package namespace declarations. You could reconstruct the same namespaces in the in-memory model first, but as a shortcut, you could also disable the package namespace on the object being added. Here is a code example to help clarify this:

1 import sys
2 import os.path
3 from libsbml import *
4 
5 # We read an SBML L3V1 model that uses the 'comp' package.
6 
7 doc = readSBML('sbml-file-with-comp-elements.xml');
8 if doc.getNumErrors() > 0:
9  print('readSBML encountered errors while reading the file.')
10  doc.printErrors()
11  sys.exit(1)
12 
13 # We extract one of the species from the model.
14 
15 model = doc.getModel()
16 if model == None:
17  print('Unable to retrieve Model object')
18  sys.exit(1)
19 
20 s1 = model.getSpecies(0)
21 if s1 == None:
22  print('Unable to retrieve Species object')
23  sys.exit(1)
24 
25 # We construct a new model.
26 # This model does not use the 'comp' package.
27 
28 try:
29  newDoc = SBMLDocument(3, 1)
30 except ValueError:
31  print('Could not create SBMLDocument object')
32  sys.exit(1)
33 
34 newModel = newDoc.createModel()
35 if newModel == None:
36  print('Unable to create new Model object')
37  sys.exit(1)
38 
39 # The following would normally fail with an error, because
40 # addSpecies() would first check that the parent of the given
41 # object has namespaces declared, and will discover that s1
42 # does but newModel does not.
43 
44 # newModel.addSpecies(s1)
45 
46 # However, if we disable the 'comp' package on s1, then the
47 # call to addSpecies will work.
48 
49 compNS = 'http://www.sbml.org/sbml/level3/version1/comp/version1'
50 status = s1.disablePackage(compNS, 'comp')
51 if status != LIBSBML_OPERATION_SUCCESS:
52  print('Unable to disable package.')
53  sys.exit(1)
54 
55 newSpecies = newModel.addSpecies(s1) # This will work now.
56 if newSpecies == None:
57  print('Could not add Species') # (This will not happen,
58  sys.exit(1) # but always check errors.)
Parameters
pkgURIthe URI of the package.
pkgPrefixthe XML prefix of the package.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
enablePackage()
def libsbml.SBase.enablePackage (   self,
  pkgURI,
  pkgPrefix,
  flag 
)
inherited

Enables or disables the given SBML Level 3 package on this object.

enablePackage(string pkgURI, string pkgPrefix, bool flag)   int

This method enables the specified package on this object and other objects connected by child-parent links in the same SBMLDocument object. This method is the converse of SBase.disablePackage().

Parameters
pkgURIthe URI of the package.
pkgPrefixthe XML prefix of the package.
flagwhether to enable (True) or disable (False) the package.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
disablePackage()
def libsbml.SBase.getAncestorOfType (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

getAncestorOfType(int type, string pkgName)   SBase
getAncestorOfType(int type)   SBase

Each variant is described separately below.


Method variant with the following signature:
getAncestorOfType(int type, string pkgName = 'core')

Returns the first ancestor object that has the given SBML type code from the given package.

LibSBML attaches an identifying code to every kind of SBML object. These are known as SBML type codes. In the Python language interface for libSBML, the type codes are defined as static integer constants in the interface class libsbml. The names of the type codes all begin with the characters SBML_.

This method searches the tree of objects that are parents of this object, and returns the first one that has the given SBML type code from the given pkgName.

Parameters
typethe SBML type code of the object sought.
pkgName(optional) the short name of an SBML Level 3 package to which the sought-after object must belong.
Returns
the ancestor SBML object of this SBML object that corresponds to the given SBML object type code, or None if no ancestor exists.
Warning
The optional argument pkgName must be used for all type codes from SBML Level 3 packages. Otherwise, the function will search the 'core' namespace alone, not find any corresponding elements, and return None.
Note
Owing to the way that language interfaces are created in libSBML, this documentation may show methods that define default values for parameters with text that has the form parameter = value. This is not to be intepreted as a Python keyword argument; the use of a parameter name followed by an equals sign followed by a value is only meant to indicate a default value if the argument is not provided at all. It is not a keyword in the Python sense.

Method variant with the following signature:
getAncestorOfType(int type, string pkgName = 'core')

Returns the first ancestor object that has the given SBML type code from the given package.

LibSBML attaches an identifying code to every kind of SBML object. These are known as SBML type codes. In the Python language interface for libSBML, the type codes are defined as static integer constants in the interface class libsbml. The names of the type codes all begin with the characters SBML_.

This method searches the tree of objects that are parents of this object, and returns the first one that has the given SBML type code from the given pkgName.

Parameters
typethe SBML type code of the object sought.
pkgName(optional) the short name of an SBML Level 3 package to which the sought-after object must belong.
Returns
the ancestor SBML object of this SBML object that corresponds to the given SBML object type code, or None if no ancestor exists.
Warning
The optional argument pkgName must be used for all type codes from SBML Level 3 packages. Otherwise, the function will search the 'core' namespace alone, not find any corresponding elements, and return None.
Note
Owing to the way that language interfaces are created in libSBML, this documentation may show methods that define default values for parameters with text that has the form parameter = value. This is not to be intepreted as a Python keyword argument; the use of a parameter name followed by an equals sign followed by a value is only meant to indicate a default value if the argument is not provided at all. It is not a keyword in the Python sense.
def libsbml.SBase.getAnnotation (   self,
  args 
)
inherited

Returns the content of the 'annotation' subelement of this object as a tree of XMLNode objects.

getAnnotation()   XMLNode
Whereas the SBML 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

The annotations returned by this method will be in XML form. LibSBML provides an object model and related interfaces for certain specific kinds of annotations, namely model history information and RDF content. See the ModelHistory, CVTerm and RDFAnnotationParser classes for more information about the facilities available.

Returns
the annotation of this SBML object as a tree of XMLNode objects.
See also
getAnnotationString()
isSetAnnotation()
setAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
unsetAnnotation()
def libsbml.SBase.getAnnotationString (   self,
  args 
)
inherited

Returns the content of the 'annotation' subelement of this object as a character string.

getAnnotationString()   string
Whereas the SBML 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

The annotations returned by this method will be in string form. See the method getAnnotation() for a version that returns annotations in XML form.

Returns
the annotation of this SBML object as a character string.
See also
getAnnotation()
isSetAnnotation()
setAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
unsetAnnotation()
def libsbml.SBase.getColumn (   self)
inherited

Returns the column number where this object first appears in the XML representation of the SBML document.

getColumn()   long
Returns
the column number of this SBML object. If this object was created programmatically and not read from a file, this method will return the value 0.
Note
The column number for each construct in an SBML model is set upon reading the model. The accuracy of the column number depends on the correctness of the XML representation of the model, and on the particular XML parser library being used. The former limitation relates to the following problem: if the model is actually invalid XML, then the parser may not be able to interpret the data correctly and consequently may not be able to establish the real column number. The latter limitation is simply that different parsers seem to have their own accuracy limitations, and out of all the parsers supported by libSBML, none have been 100% accurate in all situations. (At this time, libSBML supports the use of libxml2, Expat and Xerces.)
See also
getLine()
def libsbml.Compartment.getCompartmentType (   self)

Get the value of the 'compartmentType' attribute of this Compartment object.

getCompartmentType()   string
Returns
the value of the 'compartmentType' attribute of this Compartment object as a string.
Note
The 'compartmentType' attribute is only available in SBML Level 2 Versions 2–4.
See also
isSetCompartmentType()
setCompartmentType()
unsetCompartmentType()
def libsbml.Compartment.getConstant (   self)

Get the value of the 'constant' attribute of this Compartment object.

getConstant()   bool
Returns
True if this Compartment object's size is flagged as being constant, False otherwise.
See also
isSetConstant()
setConstant()
def libsbml.SBase.getCVTerm (   self,
  n 
)
inherited

Returns the nth CVTerm in the list of CVTerms of this SBML object.

getCVTerm(long  n)   CVTerm
Parameters
nlong the index of the CVTerm to retrieve.
Returns
the nth CVTerm in the list of CVTerms for this SBML object. If the index n is invalid, None is returned.
def libsbml.SBase.getCVTerms (   self,
  args 
)
inherited

Returns a list of CVTerm objects in the annotations of this SBML object.

getCVTerms()   List *
Returns
the list of CVTerms for this SBML object.
def libsbml.Compartment.getDerivedUnitDefinition (   self,
  args 
)

Constructs and returns a UnitDefinition that corresponds to the units of this Compartment object's designated size.

getDerivedUnitDefinition()   UnitDefinition
Compartments in SBML have an attribute ('units') for declaring the units of measurement intended for the value of the compartment's size. In the absence of a value given for this attribute, the units are inherited from values either defined on the enclosing Model (in SBML Level 3) or in defaults (in SBML Level 2). This method returns a UnitDefinition object based on how this compartment's units are interpreted according to the relevant SBML guidelines, or it returns None if no units have been declared and no defaults are defined by the relevant SBML specification.

Note that unit declarations for Compartment objects are specified in terms of the identifier of a unit, but this method returns an object , not a unit identifier. It does this by constructing an appropriate UnitDefinition object. For SBML Level 2 models, it will do this even when the value of the 'units' attribute is one of the special SBML Level 2 unit identifiers 'substance', 'volume', 'area', 'length' or 'time'. Callers may find this useful in conjunction with the helper methods provided by the UnitDefinition class for comparing different UnitDefinition objects.

Returns
a UnitDefinition that expresses the units of this Compartment object, or None if one cannot be constructed.
Note
The libSBML system for unit analysis depends on the model as a whole. In cases where the Compartment object has not yet been added to a model, or the model itself is incomplete, unit analysis is not possible, and consequently this method will return None.
See also
isSetUnits()
getUnits()
def libsbml.SBase.getDisabledPlugin (   self,
  args 
)
inherited

Returns the nth disabled plug-in object (extension interface) for an SBML Level 3 package extension.

getDisabledPlugin(long  n)   SBasePlugin

If no such plugin exists, None is returned.

SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
If a plugin is disabled, the package information it contains is no longer considered to be part of the SBML document for the purposes of searching the document or writing out the document. However, the information is still retained, so if the plugin is enabled again, the same information will once again be available, and will be written out to the final model.
Parameters
nthe index of the disabled plug-in to return.
Returns
the nth disabled plug-in object (the libSBML extension interface) of a package extension. If the index n is invalid, None is returned.
See also
getNumDisabledPlugins()
getPlugin()
def libsbml.SBase.getElementByMetaId (   self,
  args 
)
inherited

Returns the first child element it can find with a specific 'metaid' attribute value, or None if no such object is found.

getElementByMetaId(string metaid)   SBase
The optional attribute named 'metaid', present on every major SBML component type, is for supporting metadata annotations using RDF (Resource Description Format). The attribute value has the data type XML ID, the XML identifier type, which means each 'metaid' value must be globally unique within an SBML file. The latter point is important, because the uniqueness criterion applies across any attribute with type ID anywhere in the file, not just the 'metaid' attribute used by SBML—something to be aware of if your application-specific XML content inside the 'annotation' subelement happens to use the XML ID type. Although SBML itself specifies the use of XML ID only for the 'metaid' attribute, SBML-compatible applications should be careful if they use XML ID's in XML portions of a model that are not defined by SBML, such as in the application-specific content of the 'annotation' subelement. Finally, note that LibSBML does not provide an explicit XML ID data type; it uses ordinary character strings, which is easier for applications to support.
Parameters
metaidstring representing the 'metaid' attribute value of the object to find.
Returns
pointer to the first element found with the given meta-identifier.
def libsbml.SBase.getElementBySId (   self,
  args 
)
inherited

Returns the first child element found that has the given id in the model-wide SId namespace, or None if no such object is found.

getElementBySId(string id)   SBase
Parameters
idstring representing the 'id' attribute value of the object to find.
Returns
pointer to the first element found with the given identifier.
def libsbml.Compartment.getElementName (   self)

Returns the XML element name of this object.

For Compartment, the XML element name is always 'compartment'.

getElementName()   string
Returns
the name of this element.
def libsbml.Compartment.getId (   self)

Returns the value of the 'id' attribute of this Compartment.

getId()   string
Note
Because of the inconsistent behavior of this function with respect to assignments and rules, it is now recommended to use the getIdAttribute() function instead.
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Returns
the id of this Compartment.
See also
getIdAttribute()
setIdAttribute()
isSetIdAttribute()
unsetIdAttribute()
def libsbml.SBase.getIdAttribute (   self)
inherited

Returns the value of the 'id' attribute of this SBML object.

getIdAttribute()   string
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Returns
the id of this SBML object, if set and valid for this level and version of SBML; an empty string otherwise.
Note
Because of the inconsistent behavior of this function with respect to assignments and rules, callers should use getIdAttribute() instead.
See also
setIdAttribute()
isSetIdAttribute()
unsetIdAttribute()
def libsbml.SBase.getLevel (   self)
inherited

Returns the SBML Level of the SBMLDocument object containing this object.

getLevel()   long
LibSBML uses the class SBMLDocument as a top-level container for storing SBML content and data associated with it (such as warnings and error messages). An SBML model in libSBML is contained inside an SBMLDocument object. SBMLDocument corresponds roughly to the class SBML defined in the SBML Level 3 and Level 2 specifications, but it does not have a direct correspondence in SBML Level 1. (But, it is created by libSBML no matter whether the model is Level 1, Level 2 or Level 3.)
Returns
the SBML level of this SBML object.
See also
getVersion()
getNamespaces()
getPackageVersion()
def libsbml.SBase.getLine (   self)
inherited

Returns the line number where this object first appears in the XML representation of the SBML document.

getLine()   long
Returns
the line number of this SBML object. If this object was created programmatically and not read from a file, this method will return the value 0.
Note
The line number for each construct in an SBML model is set upon reading the model. The accuracy of the line number depends on the correctness of the XML representation of the model, and on the particular XML parser library being used. The former limitation relates to the following problem: if the model is actually invalid XML, then the parser may not be able to interpret the data correctly and consequently may not be able to establish the real line number. The latter limitation is simply that different parsers seem to have their own accuracy limitations, and out of all the parsers supported by libSBML, none have been 100% accurate in all situations. (At this time, libSBML supports the use of libxml2, Expat and Xerces.)
See also
getColumn()
def libsbml.SBase.getListOfAllElements (   self,
  filter = None 
)
inherited

Returns an SBaseList of all child SBase objects, including those nested to an arbitrary depth.

getListOfAllElements(ElementFilter filter)   SBaseList
getListOfAllElements()   SBaseList
Returns
a list of all objects that are children of this object.
def libsbml.SBase.getListOfAllElementsFromPlugins (   self,
  filter = None 
)
inherited

Returns a List of all child SBase objects contained in SBML package plug-ins.

getListOfAllElementsFromPlugins(ElementFilter filter)   SBaseList
getListOfAllElementsFromPlugins()   SBaseList
SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.

This method walks down the list of all SBML Level 3 packages used by this object and returns all child objects defined by those packages.

Returns
a pointer to a List of pointers to all children objects from plug-ins.
def libsbml.SBase.getMetaId (   self)
inherited

Returns the value of the 'metaid' attribute of this SBML object.

getMetaId()   string
The optional attribute named 'metaid', present on every major SBML component type, is for supporting metadata annotations using RDF (Resource Description Format). The attribute value has the data type XML ID, the XML identifier type, which means each 'metaid' value must be globally unique within an SBML file. The latter point is important, because the uniqueness criterion applies across any attribute with type ID anywhere in the file, not just the 'metaid' attribute used by SBML—something to be aware of if your application-specific XML content inside the 'annotation' subelement happens to use the XML ID type. Although SBML itself specifies the use of XML ID only for the 'metaid' attribute, SBML-compatible applications should be careful if they use XML ID's in XML portions of a model that are not defined by SBML, such as in the application-specific content of the 'annotation' subelement. Finally, note that LibSBML does not provide an explicit XML ID data type; it uses ordinary character strings, which is easier for applications to support.
Returns
the meta-identifier of this SBML object.
See also
isSetMetaId()
setMetaId()
def libsbml.SBase.getModel (   self)
inherited

Returns the Model object for the SBML Document in which the current object is located.

getModel()   Model
Returns
the Model object for the SBML Document of this SBML object.
See also
getParentSBMLObject()
getSBMLDocument()
def libsbml.SBase.getModelHistory (   self,
  args 
)
inherited

Returns the ModelHistory object, if any, attached to this object.

getModelHistory()   ModelHistory
Returns
the ModelHistory object attached to this object, or None if none exist.
Note
In SBML Level 2, model history annotations were only permitted on the Model element. In SBML Level 3, they are permitted on all SBML components derived from SBase.
def libsbml.Compartment.getName (   self)

Returns the value of the 'name' attribute of this Compartment object.

getName()   string
In SBML Level 3 Version 2, the 'id' and 'name' attributes were moved to SBase directly, instead of being defined individually for many (but not all) objects. LibSBML has for a long time provided functions defined on SBase itself to get, set, and unset those attributes, which would fail or otherwise return empty strings if executed on any object for which those attributes were not defined. Now that all SBase objects define those attributes, those functions now succeed for any object with the appropriate level and version.

The 'name' attribute is optional and is not intended to be used for cross-referencing purposes within a model. Its purpose instead is to provide a human-readable label for the component. The data type of 'name' is the type string defined in XML Schema. SBML imposes no restrictions as to the content of 'name' attributes beyond those restrictions defined by the string type in XML Schema.

The recommended practice for handling 'name' is as follows. If a software tool has the capability for displaying the content of 'name' attributes, it should display this content to the user as a component's label instead of the component's 'id'. If the user interface does not have this capability (e.g., because it cannot display or use special characters in symbol names), or if the 'name' attribute is missing on a given component, then the user interface should display the value of the 'id' attribute instead. (Script language interpreters are especially likely to display 'id' instead of 'name'.)

As a consequence of the above, authors of systems that automatically generate the values of 'id' attributes should be aware some systems may display the 'id''s to the user. Authors therefore may wish to take some care to have their software create 'id' values that are: (a) reasonably easy for humans to type and read; and (b) likely to be meaningful, for example by making the 'id' attribute be an abbreviated form of the name attribute value.

An additional point worth mentioning is although there are restrictions on the uniqueness of 'id' values, there are no restrictions on the uniqueness of 'name' values in a model. This allows software applications leeway in assigning component identifiers.

Regardless of the level and version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have names). If the object in question does not posess a 'name' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the name to be set, nor will it read or write 'name' attributes for those objects.

Returns
the name of this SBML object, or the empty string if not set or unsettable.
See also
getIdAttribute()
isSetName()
setName()
unsetName()
def libsbml.SBase.getNamespaces (   self)
inherited

Returns a list of the XML Namespaces declared on the SBML document owning this object.

getNamespaces()   XMLNamespaces

The SBMLNamespaces object encapsulates SBML Level/Version/namespaces information. It is used to communicate the SBML Level, Version, and (in Level 3) packages used in addition to SBML Level 3 Core.

Returns
the XML Namespaces associated with this SBML object, or None in certain very usual circumstances where a namespace is not set.
See also
getLevel()
getVersion()
def libsbml.SBase.getNotes (   self,
  args 
)
inherited

Returns the content of the 'notes' subelement of this object as a tree of XMLNode objects.

getNotes()   XMLNode
The optional SBML element named 'notes', present on every major SBML component type (and in SBML Level 3, the 'message' subelement of Constraint), is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements conform to the definition of XHTML 1.0. However, the content cannot be entirely free-form; it must satisfy certain requirements defined in the SBML specifications for specific SBML Levels. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); this method implements a verification process that lets callers check whether the content of a given XMLNode object conforms to the SBML requirements for 'notes' and 'message' structure. Developers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations of using 'notes' in SBML. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

The 'notes' element content returned by this method will be in XML form, but libSBML does not provide an object model specifically for the content of notes. Callers will need to traverse the XML tree structure using the facilities available on XMLNode and related objects. For an alternative method of accessing the notes, see getNotesString().

Returns
the content of the 'notes' subelement of this SBML object as a tree structure composed of XMLNode objects.
See also
getNotesString()
isSetNotes()
setNotes()
setNotes()
appendNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.SBase.getNotesString (   self,
  args 
)
inherited

Returns the content of the 'notes' subelement of this object as a string.

getNotesString()   string
The optional SBML element named 'notes', present on every major SBML component type (and in SBML Level 3, the 'message' subelement of Constraint), is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements conform to the definition of XHTML 1.0. However, the content cannot be entirely free-form; it must satisfy certain requirements defined in the SBML specifications for specific SBML Levels. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); this method implements a verification process that lets callers check whether the content of a given XMLNode object conforms to the SBML requirements for 'notes' and 'message' structure. Developers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations of using 'notes' in SBML. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

For an alternative method of accessing the notes, see getNotes(), which returns the content as an XMLNode tree structure. Depending on an application's needs, one or the other method may be more convenient.

Returns
the content of the 'notes' subelement of this SBML object as a string.
See also
getNotes()
isSetNotes()
setNotes()
setNotes()
appendNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.SBase.getNumCVTerms (   self)
inherited

Returns the number of CVTerm objects in the annotations of this SBML object.

getNumCVTerms()   long
Returns
the number of CVTerms for this SBML object.
def libsbml.SBase.getNumDisabledPlugins (   self)
inherited

Returns the number of disabled plug-in objects (extension interfaces) for SBML Level 3 package extensions known.

getNumDisabledPlugins()   long
SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
If a plugin is disabled, the package information it contains is no longer considered to be part of the SBML document for the purposes of searching the document or writing out the document. However, the information is still retained, so if the plugin is enabled again, the same information will once again be available, and will be written out to the final model.
Returns
the number of disabled plug-in objects (extension interfaces) of package extensions known by this instance of libSBML.
def libsbml.SBase.getNumPlugins (   self)
inherited

Returns the number of plug-in objects (extenstion interfaces) for SBML Level 3 package extensions known.

getNumPlugins()   long
SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
Returns
the number of plug-in objects (extension interfaces) of package extensions known by this instance of libSBML.
See also
getPlugin()
def libsbml.Compartment.getOutside (   self)

Get the identifier, if any, of the Compartment object that is designated as being outside of this one.

getOutside()   string
Returns
the value of the 'outside' attribute of this Compartment object.
Note
The 'outside' attribute is defined in SBML Level 1 and Level 2, but does not exist in SBML Level 3.
See also
isSetOutside()
setOutside()
unsetOutside()
def libsbml.SBase.getPackageCoreVersion (   self)
inherited

Returns the SBML Core Version within the SBML Level of the actual object.

getPackageCoreVersion()   long
LibSBML uses the class SBMLDocument as a top-level container for storing SBML content and data associated with it (such as warnings and error messages). An SBML model in libSBML is contained inside an SBMLDocument object. SBMLDocument corresponds roughly to the class SBML defined in the SBML Level 3 and Level 2 specifications, but it does not have a direct correspondence in SBML Level 1. (But, it is created by libSBML no matter whether the model is Level 1, Level 2 or Level 3.)
Returns
the SBML core version of this SBML object.
def libsbml.SBase.getPackageName (   self)
inherited

Returns the name of the SBML Level 3 package in which this element is defined.

getPackageName()   string
Returns
the name of the SBML package in which this element is defined. The string "core" will be returned if this element is defined in SBML Level 3 Core. The string "unknown" will be returned if this element is not defined in any SBML package.
def libsbml.SBase.getPackageVersion (   self)
inherited

Returns the Version of the SBML Level 3 package to which this element belongs to.

getPackageVersion()   long
Returns
the version of the SBML Level 3 package to which this element belongs. The value 0 will be returned if this element belongs to the SBML Level 3 Core package.
See also
getLevel()
getVersion()
def libsbml.SBase.getParentSBMLObject (   self,
  args 
)
inherited

Returns the parent SBML object containing this object.

getParentSBMLObject()   SBase

This returns the immediately-containing object. This method is convenient when holding an object nested inside other objects in an SBML model.

Returns
the parent SBML object of this SBML object.
See also
getSBMLDocument()
getModel()
def libsbml.SBase.getPlugin (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

getPlugin(string package)   SBasePlugin
getPlugin(long  n)   SBasePlugin

Each variant is described separately below.


Method variant with the following signature:
getPlugin(long n)

Returns the nth plug-in object (extension interface) for an SBML Level 3 package extension. The returned plug-in will be the appropriate type of plugin requested: calling Model.getPlugin() will return an FbcModelPlugin; calling Parameter.getPlugin() will return CompSBasePlugin, etc.

If no such plugin exists, None is returned.

SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
Parameters
nthe index of the plug-in to return.
Returns
the nth plug-in object (the libSBML extension interface) of a package extension. If the index n is invalid, None is returned.
See also
getNumPlugins()
getPlugin()

Method variant with the following signature:
getPlugin(string package)

Returns a plug-in object (extension interface) for an SBML Level 3 package extension with the given package name or URI. The returned plug-in will be the appropriate type of plugin requested: calling Model.getPlugin() will return an FbcModelPlugin; calling Parameter.getPlugin() will return CompSBasePlugin, etc.

If no such plugin exists, None is returned.

SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
Parameters
packagethe name or URI of the package.
Returns
the plug-in object (the libSBML extension interface) of a package extension with the given package name or URI.
See also
getPlugin()
def libsbml.SBase.getPrefix (   self)
inherited

Returns the XML namespace prefix of this element.

getPrefix()   string

This reports the XML namespace prefix chosen for this class of object in the current SBML document. This may be an empty string if the component has no explicit prefix (for instance, if it is a core SBML object placed in the default SBML namespace of the document). If it is not empty, then it corresponds to the XML namespace prefix used set the object, whatever that may be in a given SBML document.

Returns
a text string representing the XML namespace prefix.
def libsbml.SBase.getResourceBiologicalQualifier (   self,
  resource 
)
inherited

Returns the MIRIAM biological qualifier associated with the given resource.

getResourceBiologicalQualifier(string resource)   long

In MIRIAM, qualifiers are an optional means of indicating the relationship between a model component and its annotations. There are two broad kinds of annotations: model and biological. The latter kind is used to qualify the relationship between a model component and a biological entity which it represents. Examples of relationships include 'is' and 'has part', but many others are possible. MIRIAM defines numerous relationship qualifiers to enable different software tools to qualify biological annotations in the same standardized way. In libSBML, the MIRIAM controlled-vocabulary annotations on an SBML model element are represented using lists of CVTerm objects, and the the MIRIAM biological qualifiers are represented using valueswhose names begin with BQB_ in the interface class libsbml.

This method searches the controlled-vocabulary annotations (i.e., the list of CVTerm objects) on the present object, then out of those that have biological qualifiers, looks for an annotation to the given resource. If such an annotation is found, it returns the type of biological qualifier associated with that resource as a valuewhose name begins with BQB_ from the interface class libsbml.

Parameters
resourcestring representing the resource; e.g., 'http://www.geneontology.org/#GO:0005892'.
Returns
the qualifier associated with the resource, or BQB_UNKNOWN if the resource does not exist.
Note
The set of MIRIAM biological qualifiers grows over time, although relatively slowly. The values are up to date with MIRIAM at the time of a given libSBML release. The set of values in list of BQB_ constants defined in libsbml may be expanded in later libSBML releases, to match the values defined by MIRIAM at that later time.
def libsbml.SBase.getResourceModelQualifier (   self,
  resource 
)
inherited

Returns the MIRIAM model qualifier associated with the given resource.

getResourceModelQualifier(string resource)   long

In MIRIAM, qualifiers are an optional means of indicating the relationship between a model component and its annotations. There are two broad kinds of annotations: model and biological. The former kind is used to qualify the relationship between a model component and another modeling object. An example qualifier is 'isDerivedFrom', to indicate that a given component of the model is derived from the modeling object represented by the referenced resource. MIRIAM defines numerous relationship qualifiers to enable different software tools to qualify model annotations in the same standardized way. In libSBML, the MIRIAM controlled-vocabulary annotations on an SBML model element are represented using lists of CVTerm objects, and the the MIRIAM model qualifiers are represented using valueswhose names begin with BQM_ in the interface class libsbml.

This method method searches the controlled-vocabulary annotations (i.e., the list of CVTerm objects) on the present object, then out of those that have model qualifiers, looks for an annotation to the given resource. If such an annotation is found, it returns the type of type of model qualifier associated with that resource as a valuewhose name begins with BQM_ from the interface class libsbml.

Parameters
resourcestring representing the resource; e.g., 'http://www.geneontology.org/#GO:0005892'.
Returns
the model qualifier type associated with the resource, or BQM_UNKNOWN if the resource does not exist.
Note
The set of MIRIAM model qualifiers grows over time, although relatively slowly. The values are up to date with MIRIAM at the time of a given libSBML release. The set of values in list of BQM_ constants defined in libsbml may be expanded in later libSBML releases, to match the values defined by MIRIAM at that later time.
def libsbml.SBase.getSBMLDocument (   self,
  args 
)
inherited

Returns the SBMLDocument object containing this object instance.

getSBMLDocument()   SBMLDocument
LibSBML uses the class SBMLDocument as a top-level container for storing SBML content and data associated with it (such as warnings and error messages). An SBML model in libSBML is contained inside an SBMLDocument object. SBMLDocument corresponds roughly to the class SBML defined in the SBML Level 3 and Level 2 specifications, but it does not have a direct correspondence in SBML Level 1. (But, it is created by libSBML no matter whether the model is Level 1, Level 2 or Level 3.)

This method allows the caller to obtain the SBMLDocument for the current object.

Returns
the parent SBMLDocument object of this SBML object.
See also
getParentSBMLObject()
getModel()
def libsbml.SBase.getSBOTerm (   self)
inherited

Returns the integer portion of the value of the 'sboTerm' attribute of this object.

getSBOTerm()   int
Beginning with SBML Level 2 Version 2, objects derived from SBase have an optional attribute named 'sboTerm' for supporting the use of the Systems Biology Ontology. In SBML proper, the data type of the attribute is a string of the form 'SBO:NNNNNNN', where 'NNNNNNN' is a seven digit integer number; libSBML simplifies the representation by only storing the 'NNNNNNN' integer portion. Thus, in libSBML, the 'sboTerm' attribute on SBase has data type int, and SBO identifiers are stored simply as integers.
SBO terms are a type of optional annotation, and each different class of SBML object derived from SBase imposes its own requirements about the values permitted for 'sboTerm'. More details can be found in SBML specifications for Level 2 Version 2 and above.
Returns
the value of the 'sboTerm' attribute as an integer, or -1 if the value is not set.
def libsbml.SBase.getSBOTermAsURL (   self)
inherited

Returns the URL representation of the 'sboTerm' attribute of this object.

getSBOTermAsURL()   string

This method returns the entire SBO identifier as a text string in the form http://identifiers.org/biomodels.sbo/SBO:NNNNNNN'.

SBO terms are a type of optional annotation, and each different class of SBML object derived from SBase imposes its own requirements about the values permitted for 'sboTerm'. More details can be found in SBML specifications for Level 2 Version 2 and above.
Returns
the value of the 'sboTerm' attribute as an identifiers.org URL, or an empty string if the value is not set.
def libsbml.SBase.getSBOTermID (   self)
inherited

Returns the string representation of the 'sboTerm' attribute of this object.

getSBOTermID()   string
Beginning with SBML Level 2 Version 2, objects derived from SBase have an optional attribute named 'sboTerm' for supporting the use of the Systems Biology Ontology. In SBML proper, the data type of the attribute is a string of the form 'SBO:NNNNNNN', where 'NNNNNNN' is a seven digit integer number; libSBML simplifies the representation by only storing the 'NNNNNNN' integer portion. Thus, in libSBML, the 'sboTerm' attribute on SBase has data type int, and SBO identifiers are stored simply as integers.
SBO terms are a type of optional annotation, and each different class of SBML object derived from SBase imposes its own requirements about the values permitted for 'sboTerm'. More details can be found in SBML specifications for Level 2 Version 2 and above.
Returns
the value of the 'sboTerm' attribute as a string (its value will be of the form 'SBO:NNNNNNN'), or an empty string if the value is not set.
def libsbml.Compartment.getSize (   self)

Get the size of this Compartment object.

getSize()   float
In SBML Level 1, compartments are always three-dimensional constructs and only have volumes, whereas in SBML Level 2 and higher, compartments may be other than three-dimensional, and therefore the 'volume' attribute is named 'size' in Level 2 and above. LibSBML provides both getSize() and getVolume() for easier support of different SBML Levels.
Returns
the value of the 'size' attribute ('volume' in Level 1) of this Compartment object as a floating-point number.
Note
This method is identical to getVolume().
See also
getVolume()
isSetSize()
setSize()
unsetSize()
def libsbml.Compartment.getSpatialDimensions (   self)

Get the number of spatial dimensions of this Compartment object.

getSpatialDimensions()   long
Returns
the value of the 'spatialDimensions' attribute of this Compartment object as a long integereger.
Note
In SBML Level 3, the data type of the 'spatialDimensions' attribute is float, whereas in Level 2, it is integer. To avoid backward compatibility issues, libSBML provides two separate methods for obtaining the value as either an integer or a type float, for models where it is relevant.
See also
getSpatialDimensionsAsDouble()
setSpatialDimensions()
isSetSpatialDimensions()
unsetSpatialDimensions()
def libsbml.Compartment.getSpatialDimensionsAsDouble (   self)

Get the number of spatial dimensions of this Compartment object, as a float.

getSpatialDimensionsAsDouble()   float
Returns
the value of the 'spatialDimensions' attribute of this Compartment object as a float, or NaN if this model is not in SBML Level 3 format.
Note
In SBML Level 3, the data type of the 'spatialDimensions' attribute is float, whereas in Level 2, it is integer. To avoid backward compatibility issues, libSBML provides two separate methods for obtaining the value as either an integer or a type float, for models where it is relevant.
See also
getSpatialDimensions()
setSpatialDimensions()
isSetSpatialDimensions()
unsetSpatialDimensions()
def libsbml.Compartment.getTypeCode (   self)

Returns the libSBML type code for this SBML object.

getTypeCode()   int
LibSBML attaches an identifying code to every kind of SBML object. These are integer constants known as SBML type codes. The names of all the codes begin with the characters SBML_. In the Python language interface for libSBML, the type codes are defined as static integer constants in the interface class libsbml. Note that different Level 3 package plug-ins may use overlapping type codes; to identify the package to which a given object belongs, call the SBase.getPackageName() method on the object.

The exception to this is lists: all SBML-style list elements have the type SBML_LIST_OF, regardless of what package they are from.

Returns
the SBML type code for this object: SBML_COMPARTMENT (default).
Warning
The specific integer values of the possible type codes may be reused by different libSBML plug-ins for SBML Level 3. packages, To fully identify the correct code, it is necessary to invoke both getPackageName() and getTypeCode() (or ListOf.getItemTypeCode()).
See also
getElementName()
getPackageName()
def libsbml.Compartment.getUnits (   self)

Get the units of this Compartment object's size.

getUnits()   string

The value of an SBML compartment's 'units' attribute establishes the unit of measurement associated with the compartment's size.

Returns
the value of the 'units' attribute of this Compartment object, as a string. An empty string indicates that no units have been assigned to the value of the size.
Note
There is an important distinction to be made between no units assigned, and assuming a value without units has any specific unit such as dimensionless. In SBML, default units are never attributed to numbers, and numbers without units are not automatically assumed to have the unit dimensionless. Please consult the relevant SBML specification document for a more in-depth explanation of this topic and the SBML unit system.
See also
isSetUnits()
setUnits()
unsetUnits()
def libsbml.SBase.getURI (   self)
inherited

Gets the namespace URI to which this element belongs to.

getURI()   string

For example, all elements that belong to SBML Level 3 Version 1 Core must would have the URI 'http://www.sbml.org/sbml/level3/version1/core'; all elements that belong to Layout Extension Version 1 for SBML Level 3 Version 1 Core must would have the URI 'http://www.sbml.org/sbml/level3/version1/layout/version1'.

This function first returns the URI for this element by looking into the SBMLNamespaces object of the document with the its package name. If not found, it will then look for the namespace associated with the element itself.

Returns
the URI of this element, as a text string.
See also
getSBMLDocument()
getPackageName()
def libsbml.SBase.getVersion (   self)
inherited

Returns the Version within the SBML Level of the SBMLDocument object containing this object.

getVersion()   long
LibSBML uses the class SBMLDocument as a top-level container for storing SBML content and data associated with it (such as warnings and error messages). An SBML model in libSBML is contained inside an SBMLDocument object. SBMLDocument corresponds roughly to the class SBML defined in the SBML Level 3 and Level 2 specifications, but it does not have a direct correspondence in SBML Level 1. (But, it is created by libSBML no matter whether the model is Level 1, Level 2 or Level 3.)
Returns
the SBML version of this SBML object.
See also
getLevel()
getNamespaces()
def libsbml.Compartment.getVolume (   self)

Get the volume of this Compartment object.

getVolume()   float
In SBML Level 1, compartments are always three-dimensional constructs and only have volumes, whereas in SBML Level 2 and higher, compartments may be other than three-dimensional, and therefore the 'volume' attribute is named 'size' in Level 2 and above. LibSBML provides both getSize() and getVolume() for easier support of different SBML Levels.
Returns
the value of the 'volume' attribute ('size' in Level 2) of this Compartment object, as a floating-point number.
Note
The attribute 'volume' only exists by that name in SBML Level 1. In Level 2 and above, the equivalent attribute is named 'size'. In SBML Level 1, a compartment's volume has a default value (1.0) and therefore methods such as isSetVolume() will always return True for a Level 1 model. In Level 2, a compartment's size (the equivalent of SBML Level 1's 'volume') is optional and has no default value, and therefore may or may not be set.
This method is identical to getSize().
See also
getSize()
isSetVolume()
setVolume()
unsetVolume()
def libsbml.Compartment.hasRequiredAttributes (   self)

Predicate returning True if all the required attributes for this Compartment object have been set.

hasRequiredAttributes()   bool

The required attributes for a Compartment object are:

  • 'id' (or 'name' in SBML Level 1)
  • 'constant' (in SBML Level 3 only)
Returns
True if the required attributes have been set, False otherwise.
def libsbml.SBase.hasValidLevelVersionNamespaceCombination (   self)
inherited

Predicate returning true if this object's level/version and namespace values correspond to a valid SBML specification.

hasValidLevelVersionNamespaceCombination()   bool

The valid combinations of SBML Level, Version and Namespace as of this release of libSBML are the following:

  • Level 1 Version 2: http://www.sbml.org/sbml/level1
  • Level 2 Version 1: http://www.sbml.org/sbml/level2
  • Level 2 Version 2: http://www.sbml.org/sbml/level2/version2
  • Level 2 Version 3: http://www.sbml.org/sbml/level2/version3
  • Level 2 Version 4: http://www.sbml.org/sbml/level2/version4
  • Level 3 Version 1 Core: http://www.sbml.org/sbml/level3/version1/core
Returns
true if the level, version and namespace values of this SBML object correspond to a valid set of values, false otherwise.
def libsbml.Compartment.initDefaults (   self)

Initializes the fields of this Compartment object to 'typical' default values.

initDefaults()

The SBML Compartment component has slightly different aspects and default attribute values in different SBML Levels and Versions. This method sets the values to certain common defaults, based mostly on what they are in SBML Level 2. Specifically:

  • Sets attribute 'spatialDimensions' to 3
  • Sets attribute 'constant' to True
  • (Applies to Level 1 models only) Sets attribute 'volume' to 1.0
  • (Applies to Level 3 models only) Sets attribute 'units' to litre
def libsbml.SBase.isPackageEnabled (   self,
  pkgName 
)
inherited

Predicate returning True if the given SBML Level 3 package is enabled with this object.

isPackageEnabled(string pkgName)   bool

The search ignores the package version.

Parameters
pkgNamethe name of the package.
Returns
True if the given package is enabled within this object, False otherwise.
See also
isPackageURIEnabled()
def libsbml.SBase.isPackageURIEnabled (   self,
  pkgURI 
)
inherited

Predicate returning True if an SBML Level 3 package with the given URI is enabled with this object.

isPackageURIEnabled(string pkgURI)   bool
Parameters
pkgURIthe URI of the package.
Returns
True if the given package is enabled within this object, False otherwise.
See also
isPackageEnabled()
def libsbml.SBase.isPkgEnabled (   self,
  pkgName 
)
inherited

Predicate returning True if the given SBML Level 3 package is enabled with this object.

isPkgEnabled(string pkgName)   bool

The search ignores the package version.

Parameters
pkgNamethe name of the package.
Returns
True if the given package is enabled within this object, False otherwise.
See also
isPkgURIEnabled()
def libsbml.SBase.isPkgURIEnabled (   self,
  pkgURI 
)
inherited

Predicate returning True if an SBML Level 3 package with the given URI is enabled with this object.

isPkgURIEnabled(string pkgURI)   bool
Parameters
pkgURIthe URI of the package.
Returns
True if the given package is enabled within this object, False otherwise.
See also
isPkgEnabled()
def libsbml.SBase.isSetAnnotation (   self)
inherited

Predicate returning True if this object's 'annotation' subelement exists and has content.

isSetAnnotation()   bool

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Returns
True if a 'annotation' subelement exists, False otherwise.
See also
getAnnotation()
getAnnotationString()
setAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
unsetAnnotation()
def libsbml.Compartment.isSetCompartmentType (   self)

Predicate returning True if this Compartment object's 'compartmentType' attribute is set.

isSetCompartmentType()   bool
Returns
True if the 'compartmentType' attribute of this Compartment is set, False otherwise.
Note
The 'compartmentType' attribute is only available in SBML Level 2 Versions 2–4.
See also
setCompartmentType()
getCompartmentType()
unsetCompartmentType()
def libsbml.Compartment.isSetConstant (   self)

Predicate returning True if this Compartment object's 'constant' attribute is set.

isSetConstant()   bool
Returns
True if the 'constant' attribute of this Compartment object is set, False otherwise.
See also
getConstant()
setConstant()
def libsbml.Compartment.isSetId (   self)

Predicate returning True if this Compartment object's 'id' attribute is set.

isSetId()   bool
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Returns
True if the 'id' attribute of this SBML object is set, False otherwise.
Note
Because of the inconsistent behavior of this function with respect to assignments and rules, it is recommended that callers use isSetIdAttribute() instead.
See also
getIdAttribute()
setIdAttribute()
unsetIdAttribute()
isSetIdAttribute()
def libsbml.SBase.isSetIdAttribute (   self)
inherited

Predicate returning True if this object's 'id' attribute is set.

isSetIdAttribute()   bool
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Returns
True if the 'id' attribute of this SBML object is set, False otherwise.
See also
getIdAttribute()
setIdAttribute()
unsetIdAttribute()
def libsbml.SBase.isSetMetaId (   self)
inherited

Predicate returning True if this object's 'metaid' attribute is set.

isSetMetaId()   bool
The optional attribute named 'metaid', present on every major SBML component type, is for supporting metadata annotations using RDF (Resource Description Format). The attribute value has the data type XML ID, the XML identifier type, which means each 'metaid' value must be globally unique within an SBML file. The latter point is important, because the uniqueness criterion applies across any attribute with type ID anywhere in the file, not just the 'metaid' attribute used by SBML—something to be aware of if your application-specific XML content inside the 'annotation' subelement happens to use the XML ID type. Although SBML itself specifies the use of XML ID only for the 'metaid' attribute, SBML-compatible applications should be careful if they use XML ID's in XML portions of a model that are not defined by SBML, such as in the application-specific content of the 'annotation' subelement. Finally, note that LibSBML does not provide an explicit XML ID data type; it uses ordinary character strings, which is easier for applications to support.
Returns
True if the 'metaid' attribute of this SBML object is set, False otherwise.
See also
getMetaId()
setMetaId()
def libsbml.SBase.isSetModelHistory (   self)
inherited

Predicate returning True if this object has a ModelHistory object attached to it.

isSetModelHistory()   bool
Returns
True if the ModelHistory of this object is set, False otherwise.
Note
In SBML Level 2, model history annotations were only permitted on the Model element. In SBML Level 3, they are permitted on all SBML components derived from SBase.
def libsbml.Compartment.isSetName (   self)

Predicate returning True if this Compartment object's 'name' attribute is set.

isSetName()   bool
In SBML Level 3 Version 2, the 'id' and 'name' attributes were moved to SBase directly, instead of being defined individually for many (but not all) objects. LibSBML has for a long time provided functions defined on SBase itself to get, set, and unset those attributes, which would fail or otherwise return empty strings if executed on any object for which those attributes were not defined. Now that all SBase objects define those attributes, those functions now succeed for any object with the appropriate level and version.

The 'name' attribute is optional and is not intended to be used for cross-referencing purposes within a model. Its purpose instead is to provide a human-readable label for the component. The data type of 'name' is the type string defined in XML Schema. SBML imposes no restrictions as to the content of 'name' attributes beyond those restrictions defined by the string type in XML Schema.

The recommended practice for handling 'name' is as follows. If a software tool has the capability for displaying the content of 'name' attributes, it should display this content to the user as a component's label instead of the component's 'id'. If the user interface does not have this capability (e.g., because it cannot display or use special characters in symbol names), or if the 'name' attribute is missing on a given component, then the user interface should display the value of the 'id' attribute instead. (Script language interpreters are especially likely to display 'id' instead of 'name'.)

As a consequence of the above, authors of systems that automatically generate the values of 'id' attributes should be aware some systems may display the 'id''s to the user. Authors therefore may wish to take some care to have their software create 'id' values that are: (a) reasonably easy for humans to type and read; and (b) likely to be meaningful, for example by making the 'id' attribute be an abbreviated form of the name attribute value.

An additional point worth mentioning is although there are restrictions on the uniqueness of 'id' values, there are no restrictions on the uniqueness of 'name' values in a model. This allows software applications leeway in assigning component identifiers.

Regardless of the level and version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have names). If the object in question does not posess a 'name' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the name to be set, nor will it read or write 'name' attributes for those objects.

Returns
True if the 'name' attribute of this SBML object is set, False otherwise.
See also
getName()
setName()
unsetName()
def libsbml.SBase.isSetNotes (   self)
inherited

Predicate returning True if this object's 'notes' subelement exists and has content.

isSetNotes()   bool

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

Returns
True if a 'notes' subelement exists, False otherwise.
See also
getNotes()
getNotesString()
setNotes()
setNotes()
appendNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.Compartment.isSetOutside (   self)

Predicate returning True if this Compartment object's 'outside' attribute is set.

isSetOutside()   bool
Returns
True if the 'outside' attribute of this Compartment object is set, False otherwise.
Note
The 'outside' attribute is defined in SBML Level 1 and Level 2, but does not exist in SBML Level 3.
See also
getOutside()
setOutside()
unsetOutside()
def libsbml.SBase.isSetSBOTerm (   self)
inherited

Predicate returning True if this object's 'sboTerm' attribute is set.

isSetSBOTerm()   bool
Returns
True if the 'sboTerm' attribute of this SBML object is set, False otherwise.
def libsbml.Compartment.isSetSize (   self)

Predicate returning True if this Compartment object's 'size' attribute is set.

isSetSize()   bool

This method is similar but not identical to isSetVolume(). The latter should be used in the context of SBML Level 1 models instead of isSetSize() because isSetVolume() performs extra processing to take into account the difference in default values between SBML Levels 1 and 2.

Returns
True if the 'size' attribute ('volume' in Level 2) of this Compartment object is set, False otherwise.
See also
isSetVolume()
setSize()
getSize()
unsetSize()
def libsbml.Compartment.isSetSpatialDimensions (   self)

Predicate returning True if this Compartment object's 'spatialDimensions' attribute is set.

isSetSpatialDimensions()   bool
Returns
True if the 'spatialDimensions' attribute of this Compartment object is set, False otherwise.
See also
getSpatialDimensions()
setSpatialDimensions()
unsetSpatialDimensions()
def libsbml.Compartment.isSetUnits (   self)

Predicate returning True if this Compartment object's 'units' attribute is set.

isSetUnits()   bool
Returns
True if the 'units' attribute of this Compartment object is set, False otherwise.
Note
There is an important distinction to be made between no units assigned, and assuming a value without units has any specific unit such as dimensionless. In SBML, default units are never attributed to numbers, and numbers without units are not automatically assumed to have the unit dimensionless. Please consult the relevant SBML specification document for a more in-depth explanation of this topic and the SBML unit system.
See also
setUnits()
getUnits()
unsetUnits()
def libsbml.SBase.isSetUserData (   self)
inherited

Predicate returning true or false depending on whether the user data of this element has been set.

isSetUserData()   bool
The user data associated with an SBML object can be used by an application developer to attach custom information to that object in the model. In case of a deep copy, this data will passed as-is. The data attribute will never be interpreted by libSBML.
Returns
boolean, True if this object's user data has been set, False otherwise.
def libsbml.Compartment.isSetVolume (   self)

Predicate returning True if this Compartment object's 'volume' attribute is set.

isSetVolume()   bool

This method is similar but not identical to isSetSize(). The latter should not be used in the context of SBML Level 1 models because the present method performs extra processing to take into account the difference in default values between SBML Levels 1 and 2.

Returns
True if the 'volume' attribute ('size' in Level 2 and above) of this Compartment object is set, False otherwise.
Note
The attribute 'volume' only exists by that name in SBML Level 1. In Level 2 and above, the equivalent attribute is named 'size'. In SBML Level 1, a compartment's volume has a default value (1.0) and therefore methods such as isSetVolume() will always return True for a Level 1 model. In Level 2, a compartment's size (the equivalent of SBML Level 1's 'volume') is optional and has no default value, and therefore may or may not be set.
See also
isSetSize()
getVolume()
setVolume()
unsetVolume()
def libsbml.SBase.matchesRequiredSBMLNamespacesForAddition (   self,
  args 
)
inherited

Returns True if this object's set of XML namespaces are a subset of the given object's XML namespaces.

matchesRequiredSBMLNamespacesForAddition(SBase sb)   bool
The SBMLNamespaces object encapsulates SBML Level/Version/namespaces information. It is used to communicate the SBML Level, Version, and (in Level 3) packages used in addition to SBML Level 3 Core. A common approach to using libSBML's SBMLNamespaces facilities is to create an SBMLNamespaces object somewhere in a program once, then hand that object as needed to object constructors that accept SBMLNamespaces as arguments.
Parameters
sban object to compare with respect to namespaces.
Returns
boolean, True if this object's collection of namespaces is a subset of sb's, False otherwise.
def libsbml.SBase.matchesSBMLNamespaces (   self,
  args 
)
inherited

Returns True if this object's set of XML namespaces are the same as the given object's XML namespaces.

matchesSBMLNamespaces(SBase sb)   bool
The SBMLNamespaces object encapsulates SBML Level/Version/namespaces information. It is used to communicate the SBML Level, Version, and (in Level 3) packages used in addition to SBML Level 3 Core. A common approach to using libSBML's SBMLNamespaces facilities is to create an SBMLNamespaces object somewhere in a program once, then hand that object as needed to object constructors that accept SBMLNamespaces as arguments.
Parameters
sban object to compare with respect to namespaces.
Returns
boolean, True if this object's collection of namespaces is the same as sb's, False otherwise.
def libsbml.SBase.removeFromParentAndDelete (   self)
inherited

Removes this object from its parent.

removeFromParentAndDelete()   int

If the parent was storing this object as a pointer, it is deleted. If not, it is simply cleared (as in ListOf objects). This is a pure virtual method, as every SBase element has different parents, and therefore different methods of removing itself. Will fail (and not delete itself) if it has no parent object. This function is designed to be overridden, but for all objects whose parent is of the class ListOf, the default implementation will work.

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.removeTopLevelAnnotationElement (   self,
  args 
)
inherited

Removes the top-level element within the 'annotation' subelement of this SBML object with the given name and optional URI.

removeTopLevelAnnotationElement(string elementName, string elementURI, bool removeEmpty)   int
removeTopLevelAnnotationElement(string elementName, string elementURI)   int
removeTopLevelAnnotationElement(string elementName)   int

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Calling this method allows a particular annotation element to be removed whilst the remaining annotations remain intact.

Parameters
elementNamea string representing the name of the top level annotation element that is to be removed.
elementURIan optional string that is used to check both the name and URI of the top level element to be removed.
removeEmptyif after removing of the element, the annotation is empty, and the removeEmpty argument is true, the annotation node will be deleted (default).
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
replaceTopLevelAnnotationElement()
replaceTopLevelAnnotationElement()
Note
Owing to the way that language interfaces are created in libSBML, this documentation may show methods that define default values for parameters with text that has the form parameter = value. This is not to be intepreted as a Python keyword argument; the use of a parameter name followed by an equals sign followed by a value is only meant to indicate a default value if the argument is not provided at all. It is not a keyword in the Python sense.
def libsbml.SBase.renameMetaIdRefs (   self,
  oldid,
  newid 
)
inherited

Replaces all uses of a given meta identifier attribute value with another value.

renameMetaIdRefs(string oldid, string newid)
In SBML, object 'meta' identifiers are of the XML data type ID; the SBML object attribute itself is typically named metaid. All attributes that hold values referring to values of type ID are of the XML data type IDREF. They are also sometimes informally referred to as 'metaid refs', in analogy to the SBML-defined type SIdRef.

This method works by looking at all meta-identifier attribute values, comparing the identifiers to the value of oldid. If any matches are found, the matching identifiers are replaced with newid. The method does not descend into child elements.

Parameters
oldidthe old identifier.
newidthe new identifier.
def libsbml.Compartment.renameSIdRefs (   self,
  oldid,
  newid 
)

Replaces all uses of a given SIdRef type attribute value with another value.

renameSIdRefs(string oldid, string newid)
In SBML, object identifiers are of a data type called SId. In SBML Level 3, an explicit data type called SIdRef was introduced for attribute values that refer to SId values; in previous Levels of SBML, this data type did not exist and attributes were simply described to as 'referring to an identifier', but the effective data type was the same as SIdRef in Level 3. These and other methods of libSBML refer to the type SIdRef for all Levels of SBML, even if the corresponding SBML specification did not explicitly name the data type.

This method works by looking at all attributes and (if appropriate) mathematical formulas in MathML content, comparing the referenced identifiers to the value of oldid. If any matches are found, the matching values are replaced with newid. The method does not descend into child elements.

Parameters
oldidthe old identifier.
newidthe new identifier.
def libsbml.Compartment.renameUnitSIdRefs (   self,
  oldid,
  newid 
)

Replaces all uses of a given UnitSIdRef type attribute value with another value.

renameUnitSIdRefs(string oldid, string newid)
In SBML, unit definitions have identifiers of type UnitSId. In SBML Level 3, an explicit data type called UnitSIdRef was introduced for attribute values that refer to UnitSId values; in previous Levels of SBML, this data type did not exist and attributes were simply described to as 'referring to a unit identifier', but the effective data type was the same as UnitSIdRef in Level 3. These and other methods of libSBML refer to the type UnitSIdRef for all Levels of SBML, even if the corresponding SBML specification did not explicitly name the data type.

This method works by looking at all unit identifier attribute values (including, if appropriate, inside mathematical formulas), comparing the referenced unit identifiers to the value of oldid. If any matches are found, the matching values are replaced with newid. The method does not descend into child elements.

Parameters
oldidthe old identifier.
newidthe new identifier.
def libsbml.SBase.replaceTopLevelAnnotationElement (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

replaceTopLevelAnnotationElement(XMLNode annotation)   int
replaceTopLevelAnnotationElement(string annotation)   int

Each variant is described separately below.


Method variant with the following signature:
replaceTopLevelAnnotationElement(XMLNode annotation)

Replaces the given top-level element within the 'annotation' subelement of this SBML object and with the annotation element supplied.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

This method determines the name of the element to be replaced from the annotation argument. Functionally it is equivalent to calling removeTopLevelAnnotationElement(name) followed by calling appendAnnotation(annotation_with_name), with the exception that the placement of the annotation element remains the same.

Parameters
annotationXMLNode representing the replacement top level annotation.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
removeTopLevelAnnotationElement()
replaceTopLevelAnnotationElement()

Method variant with the following signature:
replaceTopLevelAnnotationElement(string annotation)

Replaces the given top-level element within the 'annotation' subelement of this SBML object and with the annotation element supplied.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

This method determines the name of the element to be replaced from the annotation argument. Functionally it is equivalent to calling removeTopLevelAnnotationElement(name) followed by calling appendAnnotation(annotation_with_name), with the exception that the placement of the annotation element remains the same.

Parameters
annotationstring representing the replacement top level annotation.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
removeTopLevelAnnotationElement()
replaceTopLevelAnnotationElement()
def libsbml.SBase.setAnnotation (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

setAnnotation(XMLNode annotation)   int
setAnnotation(string annotation)   int

Each variant is described separately below.


Method variant with the following signature:
setAnnotation(XMLNode annotation)

Sets the value of the 'annotation' subelement of this SBML object.

The content of annotation is copied, and any previous content of this object's 'annotation' subelement is deleted.

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Call this method will result in any existing content of the 'annotation' subelement to be discarded. Unless you have taken steps to first copy and reconstitute any existing annotations into the annotation that is about to be assigned, it is likely that performing such wholesale replacement is unfriendly towards other software applications whose annotations are discarded. An alternative may be to use SBase.appendAnnotation() or SBase.appendAnnotation().

Parameters
annotationan XML structure that is to be used as the new content of the 'annotation' subelement of this object.
Returns
integer value indicating success/failure of the function. This particular function only does one thing irrespective of user input or object state, and thus will only return a single value:
See also
getAnnotationString()
isSetAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
unsetAnnotation()

Method variant with the following signature:
setAnnotation(string annotation)

Sets the value of the 'annotation' subelement of this SBML object.

The content of annotation is copied, and any previous content of this object's 'annotation' subelement is deleted.

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Call this method will result in any existing content of the 'annotation' subelement to be discarded. Unless you have taken steps to first copy and reconstitute any existing annotations into the annotation that is about to be assigned, it is likely that performing such wholesale replacement is unfriendly towards other software applications whose annotations are discarded. An alternative may be to use SBase.appendAnnotation() or SBase.appendAnnotation().

Parameters
annotationan XML string that is to be used as the content of the 'annotation' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getAnnotationString()
isSetAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
unsetAnnotation()
def libsbml.Compartment.setCompartmentType (   self,
  sid 
)

Sets the 'compartmentType' attribute of this Compartment object.

setCompartmentType(string sid)   int
Parameters
sidthe identifier of a CompartmentType object defined elsewhere in this Model. If the string is None, this method will return LIBSBML_INVALID_ATTRIBUTE_VALUE.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The 'compartmentType' attribute is only available in SBML Level 2 Versions 2–4.
See also
isSetCompartmentType()
getCompartmentType()
unsetCompartmentType()
def libsbml.Compartment.setConstant (   self,
  value 
)

Sets the value of the 'constant' attribute of this Compartment object.

setConstant(bool value)   int
Parameters
valuea boolean indicating whether the size/volume of this compartment should be considered constant (True) or variable (False).
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
isSetConstant()
getConstant()
def libsbml.Compartment.setId (   self,
  sid 
)

Sets the value of the 'id' attribute of this Compartment object.

setId(string sid)   int

The string sid is copied.

The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Parameters
sidthe string to use as the identifier of this Compartment object. If the string is None, this method will return LIBSBML_INVALID_ATTRIBUTE_VALUE.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getId()
unsetId()
isSetId()
def libsbml.SBase.setIdAttribute (   self,
  sid 
)
inherited

Sets the value of the 'id' attribute of this SBML object.

setIdAttribute(string sid)   int
The string sid is copied.
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Parameters
sidthe string to use as the identifier of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getIdAttribute()
setIdAttribute()
isSetIdAttribute()
unsetIdAttribute()
def libsbml.SBase.setMetaId (   self,
  metaid 
)
inherited

Sets the value of the meta-identifier attribute of this SBML object.

setMetaId(string metaid)   int
The optional attribute named 'metaid', present on every major SBML component type, is for supporting metadata annotations using RDF (Resource Description Format). The attribute value has the data type XML ID, the XML identifier type, which means each 'metaid' value must be globally unique within an SBML file. The latter point is important, because the uniqueness criterion applies across any attribute with type ID anywhere in the file, not just the 'metaid' attribute used by SBML—something to be aware of if your application-specific XML content inside the 'annotation' subelement happens to use the XML ID type. Although SBML itself specifies the use of XML ID only for the 'metaid' attribute, SBML-compatible applications should be careful if they use XML ID's in XML portions of a model that are not defined by SBML, such as in the application-specific content of the 'annotation' subelement. Finally, note that LibSBML does not provide an explicit XML ID data type; it uses ordinary character strings, which is easier for applications to support.

The string metaid is copied.

Parameters
metaidthe identifier string to use as the value of the 'metaid' attribute.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getMetaId()
isSetMetaId()
def libsbml.SBase.setModelHistory (   self,
  history 
)
inherited

Sets the ModelHistory of this object.

setModelHistory(ModelHistory history)   int

The content of history is copied, and this object's existing model history content is deleted.

Parameters
historyModelHistory of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
In SBML Level 2, model history annotations were only permitted on the Model element. In SBML Level 3, they are permitted on all SBML components derived from SBase.
def libsbml.Compartment.setName (   self,
  name 
)

Sets the value of the 'name' attribute of this Compartment object.

setName(string name)   int

The string in name is copied.

Parameters
namethe new name for the SBML object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.setNamespaces (   self,
  xmlns 
)
inherited

Sets the namespaces relevant of this SBML object.

setNamespaces(XMLNamespaces xmlns)   int

The content of xmlns is copied, and this object's existing namespace content is deleted.

The SBMLNamespaces object encapsulates SBML Level/Version/namespaces information. It is used to communicate the SBML Level, Version, and (in Level 3) packages used in addition to SBML Level 3 Core.

Parameters
xmlnsthe namespaces to set.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.setNotes (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

setNotes(XMLNode notes)   int
setNotes(string notes, bool addXHTMLMarkup)   int
setNotes(string notes)   int

Each variant is described separately below.


Method variant with the following signature:
setNotes(string notes, bool addXHTMLMarkup = false)

Sets the value of the 'notes' subelement of this SBML object to a copy of the string notes.

The content of notes is copied, and any existing content of this object's 'notes' subelement is deleted.

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

The following code illustrates a very simple way of setting the notes using this method. Here, the object being annotated is the whole SBML document, but that is for illustration purposes only; you could of course use this same approach to annotate any other SBML component.

1 try:
2  sbmlDoc = SBMLDocument(3, 1)
3 except ValueError:
4  print('Could not create SBMLDocument object')
5  sys.exit(1)
6 
7 note = '<body xmlns='http://www.w3.org/1999/xhtml'><p>here is my note</p></body>'
8 
9 status = sbmlDoc.setNotes(note)
10 if status != LIBSBML_OPERATION_SUCCESS:
11  # Do something to handle the error here.
12  print('Unable to set notes on the SBML document object')
13  sys.exit(1)
Parameters
notesan XML string that is to be used as the content of the 'notes' subelement of this object.
addXHTMLMarkupa boolean indicating whether to wrap the contents of the notes argument with XHTML paragraph (<p>) tags. This is appropriate when the string in notes does not already containg the appropriate XHTML markup.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getNotesString()
isSetNotes()
setNotes()
appendNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
Note
Owing to the way that language interfaces are created in libSBML, this documentation may show methods that define default values for parameters with text that has the form parameter = value. This is not to be intepreted as a Python keyword argument; the use of a parameter name followed by an equals sign followed by a value is only meant to indicate a default value if the argument is not provided at all. It is not a keyword in the Python sense.

Method variant with the following signature:
setNotes(XMLNode notes)

Sets the value of the 'notes' subelement of this SBML object.

The content of notes is copied, and any existing content of this object's 'notes' subelement is deleted.

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

Parameters
notesan XML structure that is to be used as the content of the 'notes' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getNotesString()
isSetNotes()
setNotes()
appendNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.Compartment.setOutside (   self,
  sid 
)

Sets the 'outside' attribute of this Compartment object.

setOutside(string sid)   int
Parameters
sidthe identifier of a compartment that encloses this one. If sid is None, then this method will return LIBSBML_INVALID_ATTRIBUTE_VALUE.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The 'outside' attribute is defined in SBML Level 1 and Level 2, but does not exist in SBML Level 3.
See also
isSetOutside()
getOutside()
unsetOutside()
def libsbml.SBase.setSBOTerm (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

setSBOTerm(int value)   int
setSBOTerm(string sboid)   int

Each variant is described separately below.


Method variant with the following signature:
setSBOTerm(int value)

Sets the value of the 'sboTerm' attribute.

Beginning with SBML Level 2 Version 2, objects derived from SBase have an optional attribute named 'sboTerm' for supporting the use of the Systems Biology Ontology. In SBML proper, the data type of the attribute is a string of the form 'SBO:NNNNNNN', where 'NNNNNNN' is a seven digit integer number; libSBML simplifies the representation by only storing the 'NNNNNNN' integer portion. Thus, in libSBML, the 'sboTerm' attribute on SBase has data type int, and SBO identifiers are stored simply as integers.
SBO terms are a type of optional annotation, and each different class of SBML object derived from SBase imposes its own requirements about the values permitted for 'sboTerm'. More details can be found in SBML specifications for Level 2 Version 2 and above.
Parameters
valuethe NNNNNNN integer portion of the SBO identifier.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
setSBOTerm()

Method variant with the following signature:
setSBOTerm(string sboid)

Sets the value of the 'sboTerm' attribute by string.

Beginning with SBML Level 2 Version 2, objects derived from SBase have an optional attribute named 'sboTerm' for supporting the use of the Systems Biology Ontology. In SBML proper, the data type of the attribute is a string of the form 'SBO:NNNNNNN', where 'NNNNNNN' is a seven digit integer number; libSBML simplifies the representation by only storing the 'NNNNNNN' integer portion. Thus, in libSBML, the 'sboTerm' attribute on SBase has data type int, and SBO identifiers are stored simply as integers.
SBO terms are a type of optional annotation, and each different class of SBML object derived from SBase imposes its own requirements about the values permitted for 'sboTerm'. More details can be found in SBML specifications for Level 2 Version 2 and above.
Parameters
sboidthe SBO identifier string of the form 'SBO:NNNNNNN'.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
setSBOTerm()
def libsbml.Compartment.setSize (   self,
  value 
)

Sets the 'size' attribute (or 'volume' in SBML Level 1) of this Compartment object.

setSize (float value)   int
Parameters
valuea float representing the size of this compartment instance in whatever units are in effect for the compartment.
Returns
integer value indicating success/failure of the function. This particular function only does one thing irrespective of user input or object state, and thus will only return a single value:
Note
This method is identical to setVolume().
See also
setVolume()
getSize()
isSetSize()
unsetSize()
def libsbml.Compartment.setSpatialDimensions (   self,
  args 
)

This method has multiple variants; they differ in the arguments they accept.

setSpatialDimensions(long  value)   int
setSpatialDimensions (float value)   int

Each variant is described separately below.


Method variant with the following signature:
setSpatialDimensions (float value)

Sets the 'spatialDimensions' attribute of this Compartment object as a float.

Parameters
valuea float indicating the number of dimensions of this compartment.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getSpatialDimensions()
isSetSpatialDimensions()
unsetSpatialDimensions()

Method variant with the following signature:
setSpatialDimensions(long value)

Sets the 'spatialDimensions' attribute of this Compartment object.

Parameters
valuea long integereger indicating the number of dimensions of this compartment.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getSpatialDimensions()
isSetSpatialDimensions()
unsetSpatialDimensions()
def libsbml.Compartment.setUnits (   self,
  sid 
)

Sets the 'units' attribute of this Compartment object.

setUnits(string sid)   int
Parameters
sidthe identifier of the defined units to use. If sid is None, then this method will return LIBSBML_INVALID_ATTRIBUTE_VALUE.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
isSetUnits()
getUnits()
unsetUnits()
def libsbml.Compartment.setVolume (   self,
  value 
)

Sets the 'volume' attribute (or 'size' in SBML Level 2) of this Compartment object.

setVolume (float value)   int

This method is identical to setSize() and is provided for compatibility between SBML Level 1 and higher Levels of SBML.

Parameters
valuea float representing the volume of this compartment instance in whatever units are in effect for the compartment.
Returns
integer value indicating success/failure of the function. This particular function only does one thing irrespective of user input or object state, and thus will only return a single value:
Note
The attribute 'volume' only exists by that name in SBML Level 1. In Level 2 and above, the equivalent attribute is named 'size'. In SBML Level 1, a compartment's volume has a default value (1.0) and therefore methods such as isSetVolume() will always return True for a Level 1 model. In Level 2, a compartment's size (the equivalent of SBML Level 1's 'volume') is optional and has no default value, and therefore may or may not be set.
See also
setSize()
getVolume()
isSetVolume()
unsetVolume()
def libsbml.SBase.toSBML (   self)
inherited

Returns a string consisting of a partial SBML corresponding to just this object.

toSBML()   string
Returns
the partial SBML that describes this SBML object.
Warning
This is primarily provided for testing and debugging purposes. It may be removed in a future version of libSBML.
def libsbml.SBase.toXMLNode (   self)
inherited

Returns this element as an XMLNode.

toXMLNode()   XMLNode
Returns
this element as an XMLNode.
Warning
This operation is computationally expensive, because the element has to be fully serialized to a string and then parsed into the XMLNode structure. Attempting to convert a large tree structure (e.g., a large Model) may consume significant computer memory and time.
def libsbml.SBase.unsetAnnotation (   self)
inherited

Unsets the value of the 'annotation' subelement of this SBML object.

unsetAnnotation()   int

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Returns
integer value indicating success/failure of the function. This particular function only does one thing irrespective of user input or object state, and thus will only return a single value:
See also
getAnnotation()
getAnnotationString()
isSetAnnotation()
setAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
def libsbml.Compartment.unsetCompartmentType (   self)

Unsets the value of the 'compartmentType' attribute of this Compartment object.

unsetCompartmentType()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The 'compartmentType' attribute is only available in SBML Level 2 Versions 2–4.
See also
setCompartmentType()
isSetCompartmentType()
getCompartmentType()
def libsbml.Compartment.unsetConstant (   self)

Unsets the value of the 'constant' attribute of this Compartment object.

unsetConstant()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
isSetConstant()
setConstant()
getConstant()
def libsbml.SBase.unsetCVTerms (   self)
inherited

Clears the list of CVTerm objects attached to this SBML object.

unsetCVTerms()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.unsetId (   self)
inherited

Unsets the value of the 'id' attribute of this SBML object.

unsetId()   int
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getIdAttribute()
setIdAttribute()
isSetIdAttribute()
unsetIdAttribute()
def libsbml.SBase.unsetIdAttribute (   self)
inherited

Unsets the value of the 'id' attribute of this SBML object.

unsetIdAttribute()   int

Most (but not all) objects in SBML include two common attributes: 'id' and 'name'. The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier.

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getIdAttribute()
setIdAttribute()
isSetIdAttribute()
def libsbml.SBase.unsetMetaId (   self)
inherited

Unsets the value of the 'metaid' attribute of this SBML object.

unsetMetaId()   int
The optional attribute named 'metaid', present on every major SBML component type, is for supporting metadata annotations using RDF (Resource Description Format). The attribute value has the data type XML ID, the XML identifier type, which means each 'metaid' value must be globally unique within an SBML file. The latter point is important, because the uniqueness criterion applies across any attribute with type ID anywhere in the file, not just the 'metaid' attribute used by SBML—something to be aware of if your application-specific XML content inside the 'annotation' subelement happens to use the XML ID type. Although SBML itself specifies the use of XML ID only for the 'metaid' attribute, SBML-compatible applications should be careful if they use XML ID's in XML portions of a model that are not defined by SBML, such as in the application-specific content of the 'annotation' subelement. Finally, note that LibSBML does not provide an explicit XML ID data type; it uses ordinary character strings, which is easier for applications to support.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.unsetModelHistory (   self)
inherited

Unsets the ModelHistory object attached to this object.

unsetModelHistory()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
In SBML Level 2, model history annotations were only permitted on the Model element. In SBML Level 3, they are permitted on all SBML components derived from SBase.
def libsbml.Compartment.unsetName (   self)

Unsets the value of the 'name' attribute of this Compartment object.

unsetName()   int
In SBML Level 3 Version 2, the 'id' and 'name' attributes were moved to SBase directly, instead of being defined individually for many (but not all) objects. LibSBML has for a long time provided functions defined on SBase itself to get, set, and unset those attributes, which would fail or otherwise return empty strings if executed on any object for which those attributes were not defined. Now that all SBase objects define those attributes, those functions now succeed for any object with the appropriate level and version.

The 'name' attribute is optional and is not intended to be used for cross-referencing purposes within a model. Its purpose instead is to provide a human-readable label for the component. The data type of 'name' is the type string defined in XML Schema. SBML imposes no restrictions as to the content of 'name' attributes beyond those restrictions defined by the string type in XML Schema.

The recommended practice for handling 'name' is as follows. If a software tool has the capability for displaying the content of 'name' attributes, it should display this content to the user as a component's label instead of the component's 'id'. If the user interface does not have this capability (e.g., because it cannot display or use special characters in symbol names), or if the 'name' attribute is missing on a given component, then the user interface should display the value of the 'id' attribute instead. (Script language interpreters are especially likely to display 'id' instead of 'name'.)

As a consequence of the above, authors of systems that automatically generate the values of 'id' attributes should be aware some systems may display the 'id''s to the user. Authors therefore may wish to take some care to have their software create 'id' values that are: (a) reasonably easy for humans to type and read; and (b) likely to be meaningful, for example by making the 'id' attribute be an abbreviated form of the name attribute value.

An additional point worth mentioning is although there are restrictions on the uniqueness of 'id' values, there are no restrictions on the uniqueness of 'name' values in a model. This allows software applications leeway in assigning component identifiers.

Regardless of the level and version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have names). If the object in question does not posess a 'name' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the name to be set, nor will it read or write 'name' attributes for those objects.

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getName()
setName()
isSetName()
def libsbml.SBase.unsetNotes (   self)
inherited

Unsets the value of the 'notes' subelement of this SBML object.

unsetNotes()   int

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

Returns
integer value indicating success/failure of the function. This particular function only does one thing irrespective of user input or object state, and thus will only return a single value:
See also
getNotesString()
isSetNotes()
setNotes()
setNotes()
appendNotes()
appendNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.Compartment.unsetOutside (   self)

Unsets the value of the 'outside' attribute of this Compartment object.

unsetOutside()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The 'outside' attribute is defined in SBML Level 1 and Level 2, but does not exist in SBML Level 3.
See also
isSetOutside()
getOutside()
setOutside()
def libsbml.SBase.unsetSBOTerm (   self)
inherited

Unsets the value of the 'sboTerm' attribute of this SBML object.

unsetSBOTerm()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Compartment.unsetSize (   self)

Unsets the value of the 'size' attribute of this Compartment object.

unsetSize()   int

In SBML Level 1, a compartment's volume has a default value (1.0) and therefore should always be set. Calling this method on a Level 1 model resets the value to 1.0 rather than actually unsetting it. In Level 2, a compartment's 'size' is optional with no default value, and unsetting it will result in the compartment having no defined size.

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
This method is identical to unsetVolume().
See also
unsetVolume()
getSize()
isSetSize()
setSize()
def libsbml.Compartment.unsetSpatialDimensions (   self)

Unsets the value of the 'spatialDimensions' attribute of this Compartment object.

unsetSpatialDimensions()   int

In SBML Levels prior to Level 3, compartments must always have a value for the number of dimensions. Consequently, calling this method on a model of SBML Level 1–2 will result in a return value of LIBSBML_UNEXPECTED_ATTRIBUTE

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
This function is only valid for SBML Level 3.
See also
getSpatialDimensions()
isSetSpatialDimensions()
setSpatialDimensions()
def libsbml.Compartment.unsetUnits (   self)

Unsets the value of the 'units' attribute of this Compartment object.

unsetUnits()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
isSetUnits()
setUnits()
getUnits()
def libsbml.SBase.unsetUserData (   self)
inherited

Unsets the user data of this element.

unsetUserData()   int
The user data associated with an SBML object can be used by an application developer to attach custom information to that object in the model. In case of a deep copy, this data will passed as-is. The data attribute will never be interpreted by libSBML.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Compartment.unsetVolume (   self)

Unsets the value of the 'volume' attribute of this Compartment object.

unsetVolume()   int

This method is identical to unsetSize(). Please refer to that method's documentation for more information about its behavior.

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The attribute 'volume' only exists by that name in SBML Level 1. In Level 2 and above, the equivalent attribute is named 'size'. In SBML Level 1, a compartment's volume has a default value (1.0) and therefore methods such as isSetVolume() will always return True for a Level 1 model. In Level 2, a compartment's size (the equivalent of SBML Level 1's 'volume') is optional and has no default value, and therefore may or may not be set.
See also
unsetSize()
getVolume()
setVolume()
isSetVolume()