libSBML Python API  5.18.0
libsbml.Species Class Reference
Inheritance diagram for libsbml.Species:
[legend]

Detailed Description

An SBML species – a pool of entities.

A species in SBML refers to a pool of entities that (a) are considered indistinguishable from each other for the purposes of the model, (b) participate in reactions, and (c) are located in a specific compartment. The SBML Species object class is intended to represent these pools.

As with other major constructs in SBML, Species has a mandatory attribute, 'id', used to give the species type an identifier in the model. The identifier must be a text string conforming to the identifer syntax permitted in SBML. Species also has an optional 'name' attribute, of type string. The 'id' and 'name' must be used according to the guidelines described in the SBML specifications.

The required attribute 'compartment' is used to identify the compartment in which the species is located. The attribute's value must be the identifier of an existing Compartment object. It is important to note that there is no default value for the 'compartment' attribute on Species; every species in an SBML model must be assigned a compartment explicitly. (This also implies that every model with one or more Species objects must define at least one Compartment object.)

The initial amount and concentration of a species

The optional attributes 'initialAmount' and 'initialConcentration', both having a data type of float, can be used to set the initial quantity of the species in the compartment where the species is located. These attributes are mutually exclusive; i.e., only one can have a value on any given instance of a Species object. Missing 'initialAmount' and 'initialConcentration' values implies that their values either are unknown, or to be obtained from an external source, or determined by an InitialAssignment or other SBML construct elsewhere in the model.

A species' initial quantity in SBML is set by the 'initialAmount' or 'initialConcentration' attribute exactly once. If the 'constant' attribute is True, then the value of the species' quantity is fixed and cannot be changed except by an InitialAssignment. These methods differ in that the 'initialAmount' and 'initialConcentration' attributes can only be used to set the species quantity to a literal floating-point number, whereas the use of an InitialAssignment object allows the value to be set using an arbitrary mathematical expression (which, thanks to MathML's expressiveness, may evaluate to a rational number). If the species' 'constant' attribute is False, the species' quantity value may be overridden by an InitialAssignment or changed by AssignmentRule or AlgebraicRule, and in addition, for t > 0, it may also be changed by a RateRule, Event objects, and as a result of being a reactant or product in one or more Reaction objects. (However, some constructs are mutually exclusive; see the SBML specifications for the precise details.) It is not an error to define 'initialAmount' or 'initialConcentration' on a species and also redefine the value using an InitialAssignment, but the 'initialAmount' or 'initialConcentration' setting in that case is ignored. The SBML specifications provide additional information about the semantics of assignments, rules and values for simulation time t <= 0.

SBML Level 2 additionally stipulates that in cases where a species' compartment has a 'spatialDimensions' value of 0 (zero), the species cannot have a value for 'initialConcentration' because the concepts of concentration and density break down when a container has zero dimensions.

The units of a species' amount or concentration

When the attribute 'initialAmount' is set, the unit of measurement associated with the value of 'initialAmount' is specified by the Species attribute 'substanceUnits'. When the 'initialConcentration' attribute is set, the unit of measurement associated with this concentration value is {unit of amount} divided by {unit of size}, where the {unit of amount} is specified by the Species 'substanceUnits' attribute, and the {unit of size} is specified by the 'units' attribute of the Compartment object in which the species is located. Note that in either case, a unit of amount is involved and determined by the 'substanceUnits' attribute. Note these two attributes alone do not determine the units of the species when the species identifier appears in a mathematical expression; that aspect is determined by the attribute 'hasOnlySubstanceUnits' discussed below.

In SBML Level 3, if the 'substanceUnits' attribute is not set on a given Species object instance, then the unit of amount for that species is inherited from the 'substanceUnits' attribute on the enclosing Model object instance. If that attribute on Model is not set either, then the unit associated with the species' quantity is undefined.

In SBML Level 2, if the 'substanceUnits' attribute is not set on a given Species object instance, then the unit of amount for that species is taken from the predefined SBML unit identifier 'substance'. The value assigned to 'substanceUnits' must be chosen from one of the following possibilities: one of the base unit identifiers defined in SBML, the built-in unit identifier 'substance', or the identifier of a new unit defined in the list of unit definitions in the enclosing Model object. The chosen units for 'substanceUnits' must be be 'dimensionless', 'mole', 'item', 'kilogram', 'gram', or units derived from these.

As noted at the beginning of this section, simply setting 'initialAmount' or 'initialConcentration' alone does not determine whether a species identifier represents an amount or a concentration when it appears elsewhere in an SBML model. The role of the attribute 'hasOnlySubstanceUnits' is to indicate whether the units of the species, when the species identifier appears in mathematical formulas, are intended to be concentration or amount. The attribute takes on a boolean value. In SBML Level 3, the attribute has no default value and must always be set in a model; in SBML Level 2, it has a default value of False.

The units of the species are used in the following ways:

  • When the species' identifier appears in a MathML formula, it represents the species' quantity, and the unit of measurement associated with the quantity is as described above.

  • The 'math' elements of AssignmentRule, InitialAssignment and EventAssignment objects referring to this species should all have the same units as the unit of measurement associated with the species quantity.

  • In a RateRule object that defines the rate of change of the species' quantity, the unit associated with the rule's 'math' element should be equal to the unit of the species' quantity divided by the model-wide unit of time; in other words, {unit of species quantity}/{unit of time}.

The 'constant' and 'boundaryCondition' attributes

The Species object class has two boolean attributes named 'constant' and 'boundaryCondition', used to indicate whether and how the quantity of that species can vary during a simulation. In SBML Level 2 they are optional; in SBML Level 3 they are mandatory. The following table shows how to interpret the combined values of these attributes.

Interpretation of species' constant and boundaryCondition attributes.
constant
value
boundaryCondition
value
Can have
assignment
or rate rule?
Can be
reactant
or product?
Species' quantity
can be changed by
true true no yes (never changes)
false true yes yes rules and events
true false no no (never changes)
false false yes yes reactions or rules (but not both at the same time), and events

By default, when a species is a product or reactant of one or more reactions, its quantity is determined by those reactions. In SBML, it is possible to indicate that a given species' quantity is not determined by the set of reactions even when that species occurs as a product or reactant; i.e., the species is on the boundary of the reaction system, and its quantity is not determined by the reactions. The boolean attribute 'boundaryCondition' can be used to indicate this. A value of False indicates that the species is part of the reaction system. In SBML Level 2, the attribute has a default value of False, while in SBML Level 3, it has no default.

The 'constant' attribute indicates whether the species' quantity can be changed at all, regardless of whether by reactions, rules, or constructs other than InitialAssignment. A value of False indicates that the species' quantity can be changed. (This is also a common value because the purpose of most simulations is precisely to calculate changes in species quantities.) In SBML Level 2, the attribute has a default value of False, while in SBML Level 3, it has no default. Note that the initial quantity of a species can be set by an InitialAssignment irrespective of the value of the 'constant' attribute.

In practice, a 'boundaryCondition' value of True means a differential equation derived from the reaction definitions should not be generated for the species. However, the species' quantity may still be changed by AssignmentRule, RateRule, AlgebraicRule, Event, and InitialAssignment constructs if its 'constant' attribute is False. Conversely, if the species' 'constant' attribute is True, then its value cannot be changed by anything except InitialAssignment.

A species having 'boundaryCondition'=False and 'constant'=False can appear as a product and/or reactant of one or more reactions in the model. If the species is a reactant or product of a reaction, it must not also appear as the target of any AssignmentRule or RateRule object in the model. If instead the species has 'boundaryCondition'= False and 'constant'=True, then it cannot appear as a reactant or product, or as the target of any AssignmentRule, RateRule or EventAssignment object in the model.

Finally, it is worth clarifying that while the constant and boundaryCondition attributes restrict whether and how the species amount changes, the same is not true of a species' concentration. In SBML, the concentration of a species is a quantity that depends on the size of the compartment in which it is located. A compartment's size may change, and therefore, so can the concentration of a species even if the amount of the species remains unchanged. A species' concentration may therefore vary even if the Species object's constant attribute is set to True in a model.

The conversionFactor attribute in SBML Level 3

In SBML Level 3, Species has an additional optional attribute, 'conversionFactor', that defines a conversion factor that applies to a particular species. The value must be the identifier of a Parameter object instance defined in the model. That Parameter object must be a constant, meaning its 'constant' attribute must be set to True. If a given Species object definition defines a value for its 'conversionFactor' attribute, it takes precedence over any factor defined by the Model object's 'conversionFactor' attribute.

The unit of measurement associated with a species' quantity can be different from the unit of extent of reactions in the model. SBML Level 3 avoids implicit unit conversions by providing an explicit way to indicate any unit conversion that might be required. The use of a conversion factor in computing the effects of reactions on a species' quantity is explained in detail in the SBML Level 3 specification document. Because the value of the 'conversionFactor' attribute is the identifier of a Parameter object, and because parameters can have units attached to them, the transformation from reaction extent units to species units can be completely specified using this approach.

Note that the unit conversion factor is only applied when calculating the effect of a reaction on a species. It is not used in any rules or other SBML constructs that affect the species, and it is also not used when the value of the species is referenced in a mathematical expression.

The speciesType attribute in SBML Level 2 Versions 2–4

In SBML Level 2 Versions 2–4, each species in a model may optionally be designated as belonging to a particular species type. The optional attribute 'speciesType' is used to identify the species type of the chemical entities that make up the pool represented by the Species objects. The attribute's value must be the identifier of an existing SpeciesType object in the model. If the 'speciesType' attribute is not present on a particular species definition, it means the pool contains chemical entities of a type unique to that pool; in effect, a virtual species type is assumed for that species, and no other species can belong to that species type. The value of 'speciesType' attributes on species have no effect on the numerical interpretation of a model; simulators and other numerical analysis software may ignore 'speciesType' attributes.

There can be only one species of a given species type in any given compartment of a model. More specifically, for all Species objects having a value for the 'speciesType' attribute, the pair

('speciesType' attribute value, 'compartment' attribute value)

must be unique across the set of all Species object in a model.

The spatialSizeUnits attribute in SBML Level 2 Versions 1–2

In versions of SBML Level 2 before Version 3, the class Species included an attribute called 'spatialSizeUnits', which allowed explicitly setting the units of size for initial concentration. LibSBML retains this attribute for compatibility with older definitions of Level 2, but its use is strongly discouraged because many software tools do no properly interpret this unit declaration and it is incompatible with all SBML specifications after Level 2 Version 3.

Additional considerations for interpreting the numerical value of a species

Species are unique in SBML in that they have a kind of duality: a species identifier may stand for either substance amount (meaning, a count of the number of individual entities) or a concentration or density (meaning, amount divided by a compartment size). The previous sections explain the meaning of a species identifier when it is referenced in a mathematical formula or in rules or other SBML constructs; however, it remains to specify what happens to a species when the compartment in which it is located changes in size.

When a species definition has a 'hasOnlySubstanceUnits' attribute value of False and the size of the compartment in which the species is located changes, the default in SBML is to assume that it is the concentration that must be updated to account for the size change. This follows from the principle that, all other things held constant, if a compartment simply changes in size, the size change does not in itself cause an increase or decrease in the number of entities of any species in that compartment. In a sense, the default is that the amount of a species is preserved across compartment size changes. Upon such size changes, the value of the concentration or density must be recalculated from the simple relationship concentration = amount / size if the value of the concentration is needed (for example, if the species identifier appears in a mathematical formula or is otherwise referenced in an SBML construct). There is one exception: if the species' quantity is determined by an AssignmentRule, RateRule, AlgebraicRule, or an EventAssignment and the species has a 'hasOnlySubstanceUnits' attribute value of False, it means that the concentration is assigned by the rule or event; in that case, the amount must be calculated when the compartment size changes. (Events also require additional care in this situation, because an event with multiple assignments could conceivably reassign both a species quantity and a compartment size simultaneously. Please refer to the SBML specifications for the details.)

Note that the above only matters if a species has a 'hasOnlySubstanceUnits' attribute value of False, meaning that the species identifier refers to a concentration wherever the identifier appears in a mathematical formula. If instead the attribute's value is True, then the identifier of the species always stands for an amount wherever it appears in a mathematical formula or is referenced by an SBML construct. In that case, there is never a question about whether an assignment or event is meant to affect the amount or concentration: it is always the amount.

A particularly confusing situation can occur when the species has 'constant' attribute value of True in combination with a 'hasOnlySubstanceUnits' attribute value of False. Suppose this species is given a value for 'initialConcentration'. Does a 'constant' value of True mean that the concentration is held constant if the compartment size changes? No; it is still the amount that is kept constant across a compartment size change. The fact that the species was initialized using a concentration value is irrelevant.

Public Member Functions

def __init__ (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def addCVTerm (self, term, newBag=False)
 Adds a copy of the given CVTerm object to this SBML object. More...
 
def appendAnnotation (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def appendNotes (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def clone (self)
 Creates and returns a deep copy of this Species object. More...
 
def connectToChild (self)
 
def deleteDisabledPlugins (self, recursive=True)
 Deletes all information stored in disabled plugins. More...
 
def disablePackage (self, pkgURI, pkgPrefix)
 Disables the given SBML Level 3 package on this object. More...
 
def enablePackage (self, pkgURI, pkgPrefix, flag)
 Enables or disables the given SBML Level 3 package on this object. More...
 
def getAncestorOfType (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def getAnnotation (self, args)
 Returns the content of the 'annotation' subelement of this object as a tree of XMLNode objects. More...
 
def getAnnotationString (self, args)
 Returns the content of the 'annotation' subelement of this object as a character string. More...
 
def getBoundaryCondition (self)
 Get the value of the 'boundaryCondition' attribute. More...
 
def getCharge (self)
 Get the value of the 'charge' attribute. More...
 
def getColumn (self)
 Returns the column number where this object first appears in the XML representation of the SBML document. More...
 
def getCompartment (self)
 Get the compartment in which this species is located. More...
 
def getConstant (self)
 Get the value of the 'constant' attribute. More...
 
def getConversionFactor (self)
 Get the value of the 'conversionFactor' attribute. More...
 
def getCVTerm (self, n)
 Returns the nth CVTerm in the list of CVTerms of this SBML object. More...
 
def getCVTerms (self, args)
 Returns a list of CVTerm objects in the annotations of this SBML object. More...
 
def getDerivedUnitDefinition (self, args)
 Constructs and returns a UnitDefinition that corresponds to the units of this Species' amount or concentration. More...
 
def getDisabledPlugin (self, args)
 Returns the nth disabled plug-in object (extension interface) for an SBML Level 3 package extension. More...
 
def getElementByMetaId (self, args)
 Returns the first child element it can find with a specific 'metaid' attribute value, or None if no such object is found. More...
 
def getElementBySId (self, args)
 Returns the first child element found that has the given id in the model-wide SId namespace, or None if no such object is found. More...
 
def getElementName (self)
 Returns the XML element name of this object, which for Species, is always 'species'. More...
 
def getHasOnlySubstanceUnits (self)
 Get the value of the 'hasOnlySubstanceUnits' attribute. More...
 
def getId (self)
 Returns the value of the 'id' attribute of this Species. More...
 
def getIdAttribute (self)
 Returns the value of the 'id' attribute of this SBML object. More...
 
def getInitialAmount (self)
 Get the value of the 'initialAmount' attribute. More...
 
def getInitialConcentration (self)
 Get the value of the 'initialConcentration' attribute. More...
 
def getLevel (self)
 Returns the SBML Level of the SBMLDocument object containing this object. More...
 
def getLine (self)
 Returns the line number where this object first appears in the XML representation of the SBML document. More...
 
def getListOfAllElements (self, filter=None)
 Returns an SBaseList of all child SBase objects, including those nested to an arbitrary depth. More...
 
def getListOfAllElementsFromPlugins (self, filter=None)
 Returns a List of all child SBase objects contained in SBML package plug-ins. More...
 
def getMetaId (self)
 Returns the value of the 'metaid' attribute of this SBML object. More...
 
def getModel (self)
 Returns the Model object for the SBML Document in which the current object is located. More...
 
def getModelHistory (self, args)
 Returns the ModelHistory object, if any, attached to this object. More...
 
def getName (self)
 Returns the value of the 'name' attribute of this Species object. More...
 
def getNamespaces (self)
 Returns a list of the XML Namespaces declared on the SBML document owning this object. More...
 
def getNotes (self, args)
 Returns the content of the 'notes' subelement of this object as a tree of XMLNode objects. More...
 
def getNotesString (self, args)
 Returns the content of the 'notes' subelement of this object as a string. More...
 
def getNumCVTerms (self)
 Returns the number of CVTerm objects in the annotations of this SBML object. More...
 
def getNumDisabledPlugins (self)
 Returns the number of disabled plug-in objects (extension interfaces) for SBML Level 3 package extensions known. More...
 
def getNumPlugins (self)
 Returns the number of plug-in objects (extenstion interfaces) for SBML Level 3 package extensions known. More...
 
def getPackageCoreVersion (self)
 Returns the SBML Core Version within the SBML Level of the actual object. More...
 
def getPackageName (self)
 Returns the name of the SBML Level 3 package in which this element is defined. More...
 
def getPackageVersion (self)
 Returns the Version of the SBML Level 3 package to which this element belongs to. More...
 
def getParentSBMLObject (self, args)
 Returns the parent SBML object containing this object. More...
 
def getPlugin (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def getPrefix (self)
 Returns the XML namespace prefix of this element. More...
 
def getResourceBiologicalQualifier (self, resource)
 Returns the MIRIAM biological qualifier associated with the given resource. More...
 
def getResourceModelQualifier (self, resource)
 Returns the MIRIAM model qualifier associated with the given resource. More...
 
def getSBMLDocument (self, args)
 Returns the SBMLDocument object containing this object instance. More...
 
def getSBOTerm (self)
 Returns the integer portion of the value of the 'sboTerm' attribute of this object. More...
 
def getSBOTermAsURL (self)
 Returns the URL representation of the 'sboTerm' attribute of this object. More...
 
def getSBOTermID (self)
 Returns the string representation of the 'sboTerm' attribute of this object. More...
 
def getSpatialSizeUnits (self)
 Get the value of the 'spatialSizeUnits' attribute. More...
 
def getSpeciesType (self)
 Get the type of this Species object object. More...
 
def getSubstanceUnits (self)
 Get the value of the 'substanceUnits' attribute. More...
 
def getTypeCode (self)
 Returns the libSBML type code for this SBML object. More...
 
def getUnits (self)
 Get the value of the 'units' attribute. More...
 
def getURI (self)
 Gets the namespace URI to which this element belongs to. More...
 
def getVersion (self)
 Returns the Version within the SBML Level of the SBMLDocument object containing this object. More...
 
def hasRequiredAttributes (self)
 Predicate returning True if all the required attributes for this Species object have been set. More...
 
def hasValidLevelVersionNamespaceCombination (self)
 Predicate returning true if this object's level/version and namespace values correspond to a valid SBML specification. More...
 
def initDefaults (self)
 Initializes the fields of this Species object to 'typical' defaults values. More...
 
def isPackageEnabled (self, pkgName)
 Predicate returning True if the given SBML Level 3 package is enabled with this object. More...
 
def isPackageURIEnabled (self, pkgURI)
 Predicate returning True if an SBML Level 3 package with the given URI is enabled with this object. More...
 
def isPkgEnabled (self, pkgName)
 Predicate returning True if the given SBML Level 3 package is enabled with this object. More...
 
def isPkgURIEnabled (self, pkgURI)
 Predicate returning True if an SBML Level 3 package with the given URI is enabled with this object. More...
 
def isSetAnnotation (self)
 Predicate returning True if this object's 'annotation' subelement exists and has content. More...
 
def isSetBoundaryCondition (self)
 Predicate returning True if this Species object's 'boundaryCondition' attribute is set. More...
 
def isSetCharge (self)
 Predicate returning True if this Species object's 'charge' attribute is set. More...
 
def isSetCompartment (self)
 Predicate returning True if this Species object's 'compartment' attribute is set. More...
 
def isSetConstant (self)
 Predicate returning True if this Species object's 'constant' attribute is set. More...
 
def isSetConversionFactor (self)
 Predicate returning True if this Species object's 'conversionFactor' attribute is set. More...
 
def isSetHasOnlySubstanceUnits (self)
 Predicate returning True if this Species object's 'hasOnlySubstanceUnits' attribute is set. More...
 
def isSetId (self)
 Predicate returning True if this Species object's 'id' attribute is set. More...
 
def isSetIdAttribute (self)
 Predicate returning True if this object's 'id' attribute is set. More...
 
def isSetInitialAmount (self)
 Predicate returning True if this Species object's 'initialAmount' attribute is set. More...
 
def isSetInitialConcentration (self)
 Predicate returning True if this Species object's 'initialConcentration' attribute is set. More...
 
def isSetMetaId (self)
 Predicate returning True if this object's 'metaid' attribute is set. More...
 
def isSetModelHistory (self)
 Predicate returning True if this object has a ModelHistory object attached to it. More...
 
def isSetName (self)
 Predicate returning True if this Species object's 'name' attribute is set. More...
 
def isSetNotes (self)
 Predicate returning True if this object's 'notes' subelement exists and has content. More...
 
def isSetSBOTerm (self)
 Predicate returning True if this object's 'sboTerm' attribute is set. More...
 
def isSetSpatialSizeUnits (self)
 Predicate returning True if this Species object's 'spatialSizeUnits' attribute is set. More...
 
def isSetSpeciesType (self)
 Predicate returning True if this Species object's 'speciesType' attribute is set. More...
 
def isSetSubstanceUnits (self)
 Predicate returning True if this Species object's 'substanceUnits' attribute is set. More...
 
def isSetUnits (self)
 Predicate returning True if this Species object's 'units' attribute is set. More...
 
def isSetUserData (self)
 Predicate returning true or false depending on whether the user data of this element has been set. More...
 
def matchesRequiredSBMLNamespacesForAddition (self, args)
 Returns True if this object's set of XML namespaces are a subset of the given object's XML namespaces. More...
 
def matchesSBMLNamespaces (self, args)
 Returns True if this object's set of XML namespaces are the same as the given object's XML namespaces. More...
 
def removeFromParentAndDelete (self)
 Removes this object from its parent. More...
 
def removeTopLevelAnnotationElement (self, args)
 Removes the top-level element within the 'annotation' subelement of this SBML object with the given name and optional URI. More...
 
def renameMetaIdRefs (self, oldid, newid)
 Replaces all uses of a given meta identifier attribute value with another value. More...
 
def renameSIdRefs (self, oldid, newid)
 Replaces all uses of a given SIdRef type attribute value with another value. More...
 
def renameUnitSIdRefs (self, oldid, newid)
 Replaces all uses of a given UnitSIdRef type attribute value with another value. More...
 
def replaceTopLevelAnnotationElement (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def setAnnotation (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def setBoundaryCondition (self, value)
 Sets the 'boundaryCondition' attribute of this Species object. More...
 
def setCharge (self, value)
 Sets the 'charge' attribute of this Species object. More...
 
def setCompartment (self, sid)
 Sets the 'compartment' attribute of this Species object. More...
 
def setConstant (self, value)
 Sets the 'constant' attribute of this Species object. More...
 
def setConversionFactor (self, sid)
 Sets the value of the 'conversionFactor' attribute of this Species object. More...
 
def setHasOnlySubstanceUnits (self, value)
 Sets the 'hasOnlySubstanceUnits' attribute of this Species object. More...
 
def setId (self, sid)
 Sets the value of the 'id' attribute of this Species. More...
 
def setIdAttribute (self, sid)
 Sets the value of the 'id' attribute of this SBML object. More...
 
def setInitialAmount (self, value)
 Sets the 'initialAmount' attribute of this Species and marks the field as set. More...
 
def setInitialConcentration (self, value)
 Sets the 'initialConcentration' attribute of this Species and marks the field as set. More...
 
def setMetaId (self, metaid)
 Sets the value of the meta-identifier attribute of this SBML object. More...
 
def setModelHistory (self, history)
 Sets the ModelHistory of this object. More...
 
def setName (self, name)
 Sets the value of the 'name' attribute of this Species. More...
 
def setNamespaces (self, xmlns)
 Sets the namespaces relevant of this SBML object. More...
 
def setNotes (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def setSBOTerm (self, args)
 This method has multiple variants; they differ in the arguments they accept. More...
 
def setSpatialSizeUnits (self, sid)
 
def setSpeciesType (self, sid)
 Sets the 'speciesType' attribute of this Species object. More...
 
def setSubstanceUnits (self, sid)
 Sets the 'substanceUnits' attribute of this Species object. More...
 
def setUnits (self, sname)
 
def toSBML (self)
 Returns a string consisting of a partial SBML corresponding to just this object. More...
 
def toXMLNode (self)
 Returns this element as an XMLNode. More...
 
def unsetAnnotation (self)
 Unsets the value of the 'annotation' subelement of this SBML object. More...
 
def unsetBoundaryCondition (self)
 Unsets the 'boundaryCondition' attribute value of this Species object. More...
 
def unsetCharge (self)
 Unsets the 'charge' attribute value of this Species object. More...
 
def unsetCompartment (self)
 Unsets the 'compartment' attribute value of this Species object. More...
 
def unsetConstant (self)
 Unsets the value of the 'constant' attribute of this Species object. More...
 
def unsetConversionFactor (self)
 Unsets the 'conversionFactor' attribute value of this Species object. More...
 
def unsetCVTerms (self)
 Clears the list of CVTerm objects attached to this SBML object. More...
 
def unsetHasOnlySubstanceUnits (self)
 Unsets the 'hasOnlySubstanceUnits' attribute value of this Species object. More...
 
def unsetId (self)
 Unsets the value of the 'id' attribute of this SBML object. More...
 
def unsetIdAttribute (self)
 Unsets the value of the 'id' attribute of this SBML object. More...
 
def unsetInitialAmount (self)
 Unsets the 'initialAmount' attribute value of this Species object. More...
 
def unsetInitialConcentration (self)
 Unsets the 'initialConcentration' attribute value of this Species object. More...
 
def unsetMetaId (self)
 Unsets the value of the 'metaid' attribute of this SBML object. More...
 
def unsetModelHistory (self)
 Unsets the ModelHistory object attached to this object. More...
 
def unsetName (self)
 Unsets the value of the 'name' attribute of this Species object. More...
 
def unsetNotes (self)
 Unsets the value of the 'notes' subelement of this SBML object. More...
 
def unsetSBOTerm (self)
 Unsets the value of the 'sboTerm' attribute of this SBML object. More...
 
def unsetSpatialSizeUnits (self)
 Unsets the 'spatialSizeUnits' attribute value of this Species object. More...
 
def unsetSpeciesType (self)
 Unsets the 'speciesType' attribute value of this Species object. More...
 
def unsetSubstanceUnits (self)
 Unsets the 'substanceUnits' attribute value of this Species object. More...
 
def unsetUnits (self)
 Unsets the 'units' attribute value of this Species object. More...
 
def unsetUserData (self)
 Unsets the user data of this element. More...
 

Constructor & Destructor Documentation

def libsbml.Species.__init__ (   self,
  args 
)

This method has multiple variants; they differ in the arguments they accept.

__init__(long  level, long  version)   Species
__init__(SBMLNamespaces sbmlns)   Species
__init__(Species orig)   Species

Each variant is described separately below.


Method variant with the following signature:
Species(SBMLNamespaces sbmlns)

Creates a new Species using the given SBMLNamespaces object sbmlns.

The SBMLNamespaces object encapsulates SBML Level/Version/namespaces information. It is used to communicate the SBML Level, Version, and (in Level 3) packages used in addition to SBML Level 3 Core. A common approach to using libSBML's SBMLNamespaces facilities is to create an SBMLNamespaces object somewhere in a program once, then hand that object as needed to object constructors that accept SBMLNamespaces as arguments.

It is worth emphasizing that although this constructor does not take an identifier argument, in SBML Level 2 and beyond, the 'id' (identifier) attribute of a Species is required to have a value. Thus, callers are cautioned to assign a value after calling this constructor. Setting the identifier can be accomplished using the method Species.setId().

Parameters
sbmlnsan SBMLNamespaces object.
Exceptions
ValueErrorThrown if the given sbmlns is inconsistent or incompatible with this object.
Note
Attempting to add an object to an SBMLDocument having a different combination of SBML Level, Version and XML namespaces than the object itself will result in an error at the time a caller attempts to make the addition. A parent object must have compatible Level, Version and XML namespaces. (Strictly speaking, a parent may also have more XML namespaces than a child, but the reverse is not permitted.) The restriction is necessary to ensure that an SBML model has a consistent overall structure. This requires callers to manage their objects carefully, but the benefit is increased flexibility in how models can be created by permitting callers to create objects bottom-up if desired. In situations where objects are not yet attached to parents (e.g., SBMLDocument), knowledge of the intented SBML Level and Version help libSBML determine such things as whether it is valid to assign a particular value to an attribute.

Method variant with the following signature:
Species(long level, long version)

Creates a new Species using the given SBML level and version values.

Parameters
levela long integer, the SBML Level to assign to this Species.
versiona long integer, the SBML Version to assign to this Species.
Exceptions
ValueErrorThrown if the given level and version combination are invalid or if this object is incompatible with the given level and version.
Note
Attempting to add an object to an SBMLDocument having a different combination of SBML Level, Version and XML namespaces than the object itself will result in an error at the time a caller attempts to make the addition. A parent object must have compatible Level, Version and XML namespaces. (Strictly speaking, a parent may also have more XML namespaces than a child, but the reverse is not permitted.) The restriction is necessary to ensure that an SBML model has a consistent overall structure. This requires callers to manage their objects carefully, but the benefit is increased flexibility in how models can be created by permitting callers to create objects bottom-up if desired. In situations where objects are not yet attached to parents (e.g., SBMLDocument), knowledge of the intented SBML Level and Version help libSBML determine such things as whether it is valid to assign a particular value to an attribute.

Method variant with the following signature:
Species(Species orig)

Copy constructor; creates a copy of this Species object.

Parameters
origthe object to copy.

Member Function Documentation

def libsbml.SBase.addCVTerm (   self,
  term,
  newBag = False 
)
inherited

Adds a copy of the given CVTerm object to this SBML object.

addCVTerm(CVTerm term, bool newBag)   int
addCVTerm(CVTerm term)   int
Parameters
termthe CVTerm to assign.
newBagif True, creates a new RDF bag with the same identifier as a previous bag, and if False, adds the term to an existing RDF bag with the same type of qualifier as the term being added.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
Since the CV Term uses the 'metaid' attribute of the object as a reference, if the object has no 'metaid' attribute value set, then the CVTerm will not be added.
This method should be used with some caution. The fact that this method copies the object passed to it means that the caller will be left holding a physically different object instance than the one contained inside this object. Changes made to the original object instance (such as resetting attribute values) will not affect the instance in this object. In addition, the caller should make sure to free the original object if it is no longer being used, or else a memory leak will result. Please see other methods on this class (particularly a corresponding method whose name begins with the word create) for alternatives that do not lead to these issues.
Owing to the way that language interfaces are created in libSBML, this documentation may show methods that define default values for parameters with text that has the form parameter = value. This is not to be intepreted as a Python keyword argument; the use of a parameter name followed by an equals sign followed by a value is only meant to indicate a default value if the argument is not provided at all. It is not a keyword in the Python sense.
def libsbml.SBase.appendAnnotation (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

appendAnnotation(XMLNode annotation)   int
appendAnnotation(string annotation)   int

Each variant is described separately below.


Method variant with the following signature:
appendAnnotation(XMLNode annotation)

Appends the given annotation to the 'annotation' subelement of this object.

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Unlike SBase.setAnnotation() or SBase.setAnnotation(), this method allows other annotations to be preserved when an application adds its own data.

Parameters
annotationan XML structure that is to be copied and appended to the content of the 'annotation' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getAnnotationString()
isSetAnnotation()
setAnnotation()
setAnnotation()
appendAnnotation()
unsetAnnotation()

Method variant with the following signature:
appendAnnotation(string annotation)

Appends the given annotation to the 'annotation' subelement of this object.

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Unlike SBase.setAnnotation() or SBase.setAnnotation(), this method allows other annotations to be preserved when an application adds its own data.

Parameters
annotationan XML string that is to be copied and appended to the content of the 'annotation' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getAnnotationString()
isSetAnnotation()
setAnnotation()
setAnnotation()
appendAnnotation()
unsetAnnotation()
def libsbml.SBase.appendNotes (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

appendNotes(XMLNode notes)   int
appendNotes(string notes)   int

Each variant is described separately below.


Method variant with the following signature:
appendNotes(string notes)

Appends the given notes to the 'notes' subelement of this object.

The content of the parameter notes is copied.

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

Parameters
notesan XML string that is to appended to the content of the 'notes' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getNotesString()
isSetNotes()
setNotes()
setNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()

Method variant with the following signature:
appendNotes(XMLNode notes)

Appends the given notes to the 'notes' subelement of this object.

The content of notes is copied.

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

Parameters
notesan XML node structure that is to appended to the content of the 'notes' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getNotesString()
isSetNotes()
setNotes()
setNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.Species.clone (   self)

Creates and returns a deep copy of this Species object.

clone()   Species
Returns
the (deep) copy of this Species object.
def libsbml.SBase.connectToChild (   self)
inherited
connectToChild()
def libsbml.SBase.deleteDisabledPlugins (   self,
  recursive = True 
)
inherited

Deletes all information stored in disabled plugins.

deleteDisabledPlugins(bool recursive)
deleteDisabledPlugins()

If the plugin is re-enabled later, it will then not have any previously-stored information.

SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
If a plugin is disabled, the package information it contains is no longer considered to be part of the SBML document for the purposes of searching the document or writing out the document. However, the information is still retained, so if the plugin is enabled again, the same information will once again be available, and will be written out to the final model.
Parameters
recursiveif True, the disabled information will be deleted also from all child elements, otherwise only from this SBase element.
See also
getNumDisabledPlugins()
def libsbml.SBase.disablePackage (   self,
  pkgURI,
  pkgPrefix 
)
inherited

Disables the given SBML Level 3 package on this object.

disablePackage(string pkgURI, string pkgPrefix)   int

This method disables the specified package on this object and other objects connected by child-parent links in the same SBMLDocument object.

An example of when this may be useful is during construction of model components when mixing existing and new models. Suppose your application read an SBML document containing a model that used the SBML Hierarchical Model Composition (“comp”) package, and extracted parts of that model in order to construct a new model in memory. The new, in-memory model will not accept a component drawn from an other SBMLDocument with different package namespace declarations. You could reconstruct the same namespaces in the in-memory model first, but as a shortcut, you could also disable the package namespace on the object being added. Here is a code example to help clarify this:

1 import sys
2 import os.path
3 from libsbml import *
4 
5 # We read an SBML L3V1 model that uses the 'comp' package.
6 
7 doc = readSBML('sbml-file-with-comp-elements.xml');
8 if doc.getNumErrors() > 0:
9  print('readSBML encountered errors while reading the file.')
10  doc.printErrors()
11  sys.exit(1)
12 
13 # We extract one of the species from the model.
14 
15 model = doc.getModel()
16 if model == None:
17  print('Unable to retrieve Model object')
18  sys.exit(1)
19 
20 s1 = model.getSpecies(0)
21 if s1 == None:
22  print('Unable to retrieve Species object')
23  sys.exit(1)
24 
25 # We construct a new model.
26 # This model does not use the 'comp' package.
27 
28 try:
29  newDoc = SBMLDocument(3, 1)
30 except ValueError:
31  print('Could not create SBMLDocument object')
32  sys.exit(1)
33 
34 newModel = newDoc.createModel()
35 if newModel == None:
36  print('Unable to create new Model object')
37  sys.exit(1)
38 
39 # The following would normally fail with an error, because
40 # addSpecies() would first check that the parent of the given
41 # object has namespaces declared, and will discover that s1
42 # does but newModel does not.
43 
44 # newModel.addSpecies(s1)
45 
46 # However, if we disable the 'comp' package on s1, then the
47 # call to addSpecies will work.
48 
49 compNS = 'http://www.sbml.org/sbml/level3/version1/comp/version1'
50 status = s1.disablePackage(compNS, 'comp')
51 if status != LIBSBML_OPERATION_SUCCESS:
52  print('Unable to disable package.')
53  sys.exit(1)
54 
55 newSpecies = newModel.addSpecies(s1) # This will work now.
56 if newSpecies == None:
57  print('Could not add Species') # (This will not happen,
58  sys.exit(1) # but always check errors.)
Parameters
pkgURIthe URI of the package.
pkgPrefixthe XML prefix of the package.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
enablePackage()
def libsbml.SBase.enablePackage (   self,
  pkgURI,
  pkgPrefix,
  flag 
)
inherited

Enables or disables the given SBML Level 3 package on this object.

enablePackage(string pkgURI, string pkgPrefix, bool flag)   int

This method enables the specified package on this object and other objects connected by child-parent links in the same SBMLDocument object. This method is the converse of SBase.disablePackage().

Parameters
pkgURIthe URI of the package.
pkgPrefixthe XML prefix of the package.
flagwhether to enable (True) or disable (False) the package.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
disablePackage()
def libsbml.SBase.getAncestorOfType (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

getAncestorOfType(int type, string pkgName)   SBase
getAncestorOfType(int type)   SBase

Each variant is described separately below.


Method variant with the following signature:
getAncestorOfType(int type, string pkgName = 'core')

Returns the first ancestor object that has the given SBML type code from the given package.

LibSBML attaches an identifying code to every kind of SBML object. These are known as SBML type codes. In the Python language interface for libSBML, the type codes are defined as static integer constants in the interface class libsbml. The names of the type codes all begin with the characters SBML_.

This method searches the tree of objects that are parents of this object, and returns the first one that has the given SBML type code from the given pkgName.

Parameters
typethe SBML type code of the object sought.
pkgName(optional) the short name of an SBML Level 3 package to which the sought-after object must belong.
Returns
the ancestor SBML object of this SBML object that corresponds to the given SBML object type code, or None if no ancestor exists.
Warning
The optional argument pkgName must be used for all type codes from SBML Level 3 packages. Otherwise, the function will search the 'core' namespace alone, not find any corresponding elements, and return None.
Note
Owing to the way that language interfaces are created in libSBML, this documentation may show methods that define default values for parameters with text that has the form parameter = value. This is not to be intepreted as a Python keyword argument; the use of a parameter name followed by an equals sign followed by a value is only meant to indicate a default value if the argument is not provided at all. It is not a keyword in the Python sense.

Method variant with the following signature:
getAncestorOfType(int type, string pkgName = 'core')

Returns the first ancestor object that has the given SBML type code from the given package.

LibSBML attaches an identifying code to every kind of SBML object. These are known as SBML type codes. In the Python language interface for libSBML, the type codes are defined as static integer constants in the interface class libsbml. The names of the type codes all begin with the characters SBML_.

This method searches the tree of objects that are parents of this object, and returns the first one that has the given SBML type code from the given pkgName.

Parameters
typethe SBML type code of the object sought.
pkgName(optional) the short name of an SBML Level 3 package to which the sought-after object must belong.
Returns
the ancestor SBML object of this SBML object that corresponds to the given SBML object type code, or None if no ancestor exists.
Warning
The optional argument pkgName must be used for all type codes from SBML Level 3 packages. Otherwise, the function will search the 'core' namespace alone, not find any corresponding elements, and return None.
Note
Owing to the way that language interfaces are created in libSBML, this documentation may show methods that define default values for parameters with text that has the form parameter = value. This is not to be intepreted as a Python keyword argument; the use of a parameter name followed by an equals sign followed by a value is only meant to indicate a default value if the argument is not provided at all. It is not a keyword in the Python sense.
def libsbml.SBase.getAnnotation (   self,
  args 
)
inherited

Returns the content of the 'annotation' subelement of this object as a tree of XMLNode objects.

getAnnotation()   XMLNode
Whereas the SBML 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

The annotations returned by this method will be in XML form. LibSBML provides an object model and related interfaces for certain specific kinds of annotations, namely model history information and RDF content. See the ModelHistory, CVTerm and RDFAnnotationParser classes for more information about the facilities available.

Returns
the annotation of this SBML object as a tree of XMLNode objects.
See also
getAnnotationString()
isSetAnnotation()
setAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
unsetAnnotation()
def libsbml.SBase.getAnnotationString (   self,
  args 
)
inherited

Returns the content of the 'annotation' subelement of this object as a character string.

getAnnotationString()   string
Whereas the SBML 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

The annotations returned by this method will be in string form. See the method getAnnotation() for a version that returns annotations in XML form.

Returns
the annotation of this SBML object as a character string.
See also
getAnnotation()
isSetAnnotation()
setAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
unsetAnnotation()
def libsbml.Species.getBoundaryCondition (   self)

Get the value of the 'boundaryCondition' attribute.

getBoundaryCondition()   bool
Returns
True if this Species' 'boundaryCondition' attribute value is True, False otherwise.
def libsbml.Species.getCharge (   self)

Get the value of the 'charge' attribute.

getCharge()   int
Returns
the charge of this Species object.
Note
Beginning in SBML Level 2 Version 2, the 'charge' attribute on Species is deprecated and in SBML Level 3 it does not exist at all. Its use strongly discouraged. Its presence is considered a misfeature in earlier definitions of SBML because its implications for the mathematics of a model were never defined, and in any case, no known modeling system ever used it. Instead, models take account of charge values directly in their definitions of species by (for example) having separate species identities for the charged and uncharged versions of the same species. This allows the condition to affect model mathematics directly. LibSBML retains this method for easier compatibility with SBML Level 1.
def libsbml.SBase.getColumn (   self)
inherited

Returns the column number where this object first appears in the XML representation of the SBML document.

getColumn()   long
Returns
the column number of this SBML object. If this object was created programmatically and not read from a file, this method will return the value 0.
Note
The column number for each construct in an SBML model is set upon reading the model. The accuracy of the column number depends on the correctness of the XML representation of the model, and on the particular XML parser library being used. The former limitation relates to the following problem: if the model is actually invalid XML, then the parser may not be able to interpret the data correctly and consequently may not be able to establish the real column number. The latter limitation is simply that different parsers seem to have their own accuracy limitations, and out of all the parsers supported by libSBML, none have been 100% accurate in all situations. (At this time, libSBML supports the use of libxml2, Expat and Xerces.)
See also
getLine()
def libsbml.Species.getCompartment (   self)

Get the compartment in which this species is located.

getCompartment()   string

The compartment is designated by its identifier.

Returns
the value of the 'compartment' attribute of this Species object, as a string.
def libsbml.Species.getConstant (   self)

Get the value of the 'constant' attribute.

getConstant()   bool
Returns
True if this Species's 'constant' attribute value is True, False otherwise.
Note
The attribute 'constant' is only available in SBML Levels 2 and 3. It does not exist on Species in Level 1.
def libsbml.Species.getConversionFactor (   self)

Get the value of the 'conversionFactor' attribute.

getConversionFactor()   string
Returns
the conversionFactor of this Species, as a string.
Note
The 'conversionFactor' attribute was introduced in SBML Level 3. It does not exist on Species in SBML Levels 1 and 2.
def libsbml.SBase.getCVTerm (   self,
  n 
)
inherited

Returns the nth CVTerm in the list of CVTerms of this SBML object.

getCVTerm(long  n)   CVTerm
Parameters
nlong the index of the CVTerm to retrieve.
Returns
the nth CVTerm in the list of CVTerms for this SBML object. If the index n is invalid, None is returned.
def libsbml.SBase.getCVTerms (   self,
  args 
)
inherited

Returns a list of CVTerm objects in the annotations of this SBML object.

getCVTerms()   List *
Returns
the list of CVTerms for this SBML object.
def libsbml.Species.getDerivedUnitDefinition (   self,
  args 
)

Constructs and returns a UnitDefinition that corresponds to the units of this Species' amount or concentration.

getDerivedUnitDefinition()   UnitDefinition

Species in SBML have an attribute ('substanceUnits') for declaring the units of measurement intended for the species' amount or concentration (depending on which one applies). In the absence of a value given for 'substanceUnits', the units are taken from the enclosing Model's definition of 'substance' or 'substance'/(size of the compartment) in which the species is located, or finally, if these are not redefined by the Model, the relevant SBML default units for those quantities. Following that procedure, the method getDerivedUnitDefinition() returns a UnitDefinition based on the interpreted units of this species's amount or concentration.

Note that the functionality that facilitates unit analysis depends on the model as a whole. Thus, in cases where the object has not been added to a model or the model itself is incomplete, unit analysis is not possible and this method will return None.

Note also that unit declarations for Species are in terms of the identifier of a unit, but this method returns a UnitDefinition object, not a unit identifier. It does this by constructing an appropriate UnitDefinition. Callers may find this particularly useful when used in conjunction with the helper methods on UnitDefinition for comparing different UnitDefinition objects.

In SBML Level 2 specifications prior to Version 3, Species includes an additional attribute named 'spatialSizeUnits', which allows explicitly setting the units of size for initial concentration. The getDerivedUnitDefinition() takes this into account for models expressed in SBML Level 2 Versions 1 and 2.

Returns
a UnitDefinition that expresses the units of this Species, or None if one cannot be constructed.
See also
getSubstanceUnits()
def libsbml.SBase.getDisabledPlugin (   self,
  args 
)
inherited

Returns the nth disabled plug-in object (extension interface) for an SBML Level 3 package extension.

getDisabledPlugin(long  n)   SBasePlugin

If no such plugin exists, None is returned.

SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
If a plugin is disabled, the package information it contains is no longer considered to be part of the SBML document for the purposes of searching the document or writing out the document. However, the information is still retained, so if the plugin is enabled again, the same information will once again be available, and will be written out to the final model.
Parameters
nthe index of the disabled plug-in to return.
Returns
the nth disabled plug-in object (the libSBML extension interface) of a package extension. If the index n is invalid, None is returned.
See also
getNumDisabledPlugins()
getPlugin()
def libsbml.SBase.getElementByMetaId (   self,
  args 
)
inherited

Returns the first child element it can find with a specific 'metaid' attribute value, or None if no such object is found.

getElementByMetaId(string metaid)   SBase
The optional attribute named 'metaid', present on every major SBML component type, is for supporting metadata annotations using RDF (Resource Description Format). The attribute value has the data type XML ID, the XML identifier type, which means each 'metaid' value must be globally unique within an SBML file. The latter point is important, because the uniqueness criterion applies across any attribute with type ID anywhere in the file, not just the 'metaid' attribute used by SBML—something to be aware of if your application-specific XML content inside the 'annotation' subelement happens to use the XML ID type. Although SBML itself specifies the use of XML ID only for the 'metaid' attribute, SBML-compatible applications should be careful if they use XML ID's in XML portions of a model that are not defined by SBML, such as in the application-specific content of the 'annotation' subelement. Finally, note that LibSBML does not provide an explicit XML ID data type; it uses ordinary character strings, which is easier for applications to support.
Parameters
metaidstring representing the 'metaid' attribute value of the object to find.
Returns
pointer to the first element found with the given meta-identifier.
def libsbml.SBase.getElementBySId (   self,
  args 
)
inherited

Returns the first child element found that has the given id in the model-wide SId namespace, or None if no such object is found.

getElementBySId(string id)   SBase
Parameters
idstring representing the 'id' attribute value of the object to find.
Returns
pointer to the first element found with the given identifier.
def libsbml.Species.getElementName (   self)

Returns the XML element name of this object, which for Species, is always 'species'.

getElementName()   string
Returns
the name of this element, i.e., 'species'.
def libsbml.Species.getHasOnlySubstanceUnits (   self)

Get the value of the 'hasOnlySubstanceUnits' attribute.

getHasOnlySubstanceUnits()   bool
Returns
True if this Species' 'hasOnlySubstanceUnits' attribute value is True, False otherwise.
Note
The 'hasOnlySubstanceUnits' attribute does not exist in SBML Level 1.
def libsbml.Species.getId (   self)

Returns the value of the 'id' attribute of this Species.

getId()   string
Note
Because of the inconsistent behavior of this function with respect to assignments and rules, it is now recommended to use the getIdAttribute() function instead.
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Returns
the id of this Species.
See also
getIdAttribute()
setIdAttribute()
isSetIdAttribute()
unsetIdAttribute()
def libsbml.SBase.getIdAttribute (   self)
inherited

Returns the value of the 'id' attribute of this SBML object.

getIdAttribute()   string
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Returns
the id of this SBML object, if set and valid for this level and version of SBML; an empty string otherwise.
Note
Because of the inconsistent behavior of this function with respect to assignments and rules, callers should use getIdAttribute() instead.
See also
setIdAttribute()
isSetIdAttribute()
unsetIdAttribute()
def libsbml.Species.getInitialAmount (   self)

Get the value of the 'initialAmount' attribute.

getInitialAmount()   float
Returns
the initialAmount of this Species, as a floating point number.
def libsbml.Species.getInitialConcentration (   self)

Get the value of the 'initialConcentration' attribute.

getInitialConcentration()   float
Returns
the initialConcentration of this Species,, as a floating point number.
Note
The attribute 'initialConcentration' is only available in SBML Level 2 and 3. It does not exist on Species in Level 1.
def libsbml.SBase.getLevel (   self)
inherited

Returns the SBML Level of the SBMLDocument object containing this object.

getLevel()   long
LibSBML uses the class SBMLDocument as a top-level container for storing SBML content and data associated with it (such as warnings and error messages). An SBML model in libSBML is contained inside an SBMLDocument object. SBMLDocument corresponds roughly to the class SBML defined in the SBML Level 3 and Level 2 specifications, but it does not have a direct correspondence in SBML Level 1. (But, it is created by libSBML no matter whether the model is Level 1, Level 2 or Level 3.)
Returns
the SBML level of this SBML object.
See also
getVersion()
getNamespaces()
getPackageVersion()
def libsbml.SBase.getLine (   self)
inherited

Returns the line number where this object first appears in the XML representation of the SBML document.

getLine()   long
Returns
the line number of this SBML object. If this object was created programmatically and not read from a file, this method will return the value 0.
Note
The line number for each construct in an SBML model is set upon reading the model. The accuracy of the line number depends on the correctness of the XML representation of the model, and on the particular XML parser library being used. The former limitation relates to the following problem: if the model is actually invalid XML, then the parser may not be able to interpret the data correctly and consequently may not be able to establish the real line number. The latter limitation is simply that different parsers seem to have their own accuracy limitations, and out of all the parsers supported by libSBML, none have been 100% accurate in all situations. (At this time, libSBML supports the use of libxml2, Expat and Xerces.)
See also
getColumn()
def libsbml.SBase.getListOfAllElements (   self,
  filter = None 
)
inherited

Returns an SBaseList of all child SBase objects, including those nested to an arbitrary depth.

getListOfAllElements(ElementFilter filter)   SBaseList
getListOfAllElements()   SBaseList
Returns
a list of all objects that are children of this object.
def libsbml.SBase.getListOfAllElementsFromPlugins (   self,
  filter = None 
)
inherited

Returns a List of all child SBase objects contained in SBML package plug-ins.

getListOfAllElementsFromPlugins(ElementFilter filter)   SBaseList
getListOfAllElementsFromPlugins()   SBaseList
SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.

This method walks down the list of all SBML Level 3 packages used by this object and returns all child objects defined by those packages.

Returns
a pointer to a List of pointers to all children objects from plug-ins.
def libsbml.SBase.getMetaId (   self)
inherited

Returns the value of the 'metaid' attribute of this SBML object.

getMetaId()   string
The optional attribute named 'metaid', present on every major SBML component type, is for supporting metadata annotations using RDF (Resource Description Format). The attribute value has the data type XML ID, the XML identifier type, which means each 'metaid' value must be globally unique within an SBML file. The latter point is important, because the uniqueness criterion applies across any attribute with type ID anywhere in the file, not just the 'metaid' attribute used by SBML—something to be aware of if your application-specific XML content inside the 'annotation' subelement happens to use the XML ID type. Although SBML itself specifies the use of XML ID only for the 'metaid' attribute, SBML-compatible applications should be careful if they use XML ID's in XML portions of a model that are not defined by SBML, such as in the application-specific content of the 'annotation' subelement. Finally, note that LibSBML does not provide an explicit XML ID data type; it uses ordinary character strings, which is easier for applications to support.
Returns
the meta-identifier of this SBML object.
See also
isSetMetaId()
setMetaId()
def libsbml.SBase.getModel (   self)
inherited

Returns the Model object for the SBML Document in which the current object is located.

getModel()   Model
Returns
the Model object for the SBML Document of this SBML object.
See also
getParentSBMLObject()
getSBMLDocument()
def libsbml.SBase.getModelHistory (   self,
  args 
)
inherited

Returns the ModelHistory object, if any, attached to this object.

getModelHistory()   ModelHistory
Returns
the ModelHistory object attached to this object, or None if none exist.
Note
In SBML Level 2, model history annotations were only permitted on the Model element. In SBML Level 3, they are permitted on all SBML components derived from SBase.
def libsbml.Species.getName (   self)

Returns the value of the 'name' attribute of this Species object.

getName()   string
In SBML Level 3 Version 2, the 'id' and 'name' attributes were moved to SBase directly, instead of being defined individually for many (but not all) objects. LibSBML has for a long time provided functions defined on SBase itself to get, set, and unset those attributes, which would fail or otherwise return empty strings if executed on any object for which those attributes were not defined. Now that all SBase objects define those attributes, those functions now succeed for any object with the appropriate level and version.

The 'name' attribute is optional and is not intended to be used for cross-referencing purposes within a model. Its purpose instead is to provide a human-readable label for the component. The data type of 'name' is the type string defined in XML Schema. SBML imposes no restrictions as to the content of 'name' attributes beyond those restrictions defined by the string type in XML Schema.

The recommended practice for handling 'name' is as follows. If a software tool has the capability for displaying the content of 'name' attributes, it should display this content to the user as a component's label instead of the component's 'id'. If the user interface does not have this capability (e.g., because it cannot display or use special characters in symbol names), or if the 'name' attribute is missing on a given component, then the user interface should display the value of the 'id' attribute instead. (Script language interpreters are especially likely to display 'id' instead of 'name'.)

As a consequence of the above, authors of systems that automatically generate the values of 'id' attributes should be aware some systems may display the 'id''s to the user. Authors therefore may wish to take some care to have their software create 'id' values that are: (a) reasonably easy for humans to type and read; and (b) likely to be meaningful, for example by making the 'id' attribute be an abbreviated form of the name attribute value.

An additional point worth mentioning is although there are restrictions on the uniqueness of 'id' values, there are no restrictions on the uniqueness of 'name' values in a model. This allows software applications leeway in assigning component identifiers.

Regardless of the level and version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have names). If the object in question does not posess a 'name' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the name to be set, nor will it read or write 'name' attributes for those objects.

Returns
the name of this SBML object, or the empty string if not set or unsettable.
See also
getIdAttribute()
isSetName()
setName()
unsetName()
def libsbml.SBase.getNamespaces (   self)
inherited

Returns a list of the XML Namespaces declared on the SBML document owning this object.

getNamespaces()   XMLNamespaces

The SBMLNamespaces object encapsulates SBML Level/Version/namespaces information. It is used to communicate the SBML Level, Version, and (in Level 3) packages used in addition to SBML Level 3 Core.

Returns
the XML Namespaces associated with this SBML object, or None in certain very usual circumstances where a namespace is not set.
See also
getLevel()
getVersion()
def libsbml.SBase.getNotes (   self,
  args 
)
inherited

Returns the content of the 'notes' subelement of this object as a tree of XMLNode objects.

getNotes()   XMLNode
The optional SBML element named 'notes', present on every major SBML component type (and in SBML Level 3, the 'message' subelement of Constraint), is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements conform to the definition of XHTML 1.0. However, the content cannot be entirely free-form; it must satisfy certain requirements defined in the SBML specifications for specific SBML Levels. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); this method implements a verification process that lets callers check whether the content of a given XMLNode object conforms to the SBML requirements for 'notes' and 'message' structure. Developers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations of using 'notes' in SBML. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

The 'notes' element content returned by this method will be in XML form, but libSBML does not provide an object model specifically for the content of notes. Callers will need to traverse the XML tree structure using the facilities available on XMLNode and related objects. For an alternative method of accessing the notes, see getNotesString().

Returns
the content of the 'notes' subelement of this SBML object as a tree structure composed of XMLNode objects.
See also
getNotesString()
isSetNotes()
setNotes()
setNotes()
appendNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.SBase.getNotesString (   self,
  args 
)
inherited

Returns the content of the 'notes' subelement of this object as a string.

getNotesString()   string
The optional SBML element named 'notes', present on every major SBML component type (and in SBML Level 3, the 'message' subelement of Constraint), is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements conform to the definition of XHTML 1.0. However, the content cannot be entirely free-form; it must satisfy certain requirements defined in the SBML specifications for specific SBML Levels. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); this method implements a verification process that lets callers check whether the content of a given XMLNode object conforms to the SBML requirements for 'notes' and 'message' structure. Developers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations of using 'notes' in SBML. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

For an alternative method of accessing the notes, see getNotes(), which returns the content as an XMLNode tree structure. Depending on an application's needs, one or the other method may be more convenient.

Returns
the content of the 'notes' subelement of this SBML object as a string.
See also
getNotes()
isSetNotes()
setNotes()
setNotes()
appendNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.SBase.getNumCVTerms (   self)
inherited

Returns the number of CVTerm objects in the annotations of this SBML object.

getNumCVTerms()   long
Returns
the number of CVTerms for this SBML object.
def libsbml.SBase.getNumDisabledPlugins (   self)
inherited

Returns the number of disabled plug-in objects (extension interfaces) for SBML Level 3 package extensions known.

getNumDisabledPlugins()   long
SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
If a plugin is disabled, the package information it contains is no longer considered to be part of the SBML document for the purposes of searching the document or writing out the document. However, the information is still retained, so if the plugin is enabled again, the same information will once again be available, and will be written out to the final model.
Returns
the number of disabled plug-in objects (extension interfaces) of package extensions known by this instance of libSBML.
def libsbml.SBase.getNumPlugins (   self)
inherited

Returns the number of plug-in objects (extenstion interfaces) for SBML Level 3 package extensions known.

getNumPlugins()   long
SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
Returns
the number of plug-in objects (extension interfaces) of package extensions known by this instance of libSBML.
See also
getPlugin()
def libsbml.SBase.getPackageCoreVersion (   self)
inherited

Returns the SBML Core Version within the SBML Level of the actual object.

getPackageCoreVersion()   long
LibSBML uses the class SBMLDocument as a top-level container for storing SBML content and data associated with it (such as warnings and error messages). An SBML model in libSBML is contained inside an SBMLDocument object. SBMLDocument corresponds roughly to the class SBML defined in the SBML Level 3 and Level 2 specifications, but it does not have a direct correspondence in SBML Level 1. (But, it is created by libSBML no matter whether the model is Level 1, Level 2 or Level 3.)
Returns
the SBML core version of this SBML object.
def libsbml.SBase.getPackageName (   self)
inherited

Returns the name of the SBML Level 3 package in which this element is defined.

getPackageName()   string
Returns
the name of the SBML package in which this element is defined. The string "core" will be returned if this element is defined in SBML Level 3 Core. The string "unknown" will be returned if this element is not defined in any SBML package.
def libsbml.SBase.getPackageVersion (   self)
inherited

Returns the Version of the SBML Level 3 package to which this element belongs to.

getPackageVersion()   long
Returns
the version of the SBML Level 3 package to which this element belongs. The value 0 will be returned if this element belongs to the SBML Level 3 Core package.
See also
getLevel()
getVersion()
def libsbml.SBase.getParentSBMLObject (   self,
  args 
)
inherited

Returns the parent SBML object containing this object.

getParentSBMLObject()   SBase

This returns the immediately-containing object. This method is convenient when holding an object nested inside other objects in an SBML model.

Returns
the parent SBML object of this SBML object.
See also
getSBMLDocument()
getModel()
def libsbml.SBase.getPlugin (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

getPlugin(string package)   SBasePlugin
getPlugin(long  n)   SBasePlugin

Each variant is described separately below.


Method variant with the following signature:
getPlugin(long n)

Returns the nth plug-in object (extension interface) for an SBML Level 3 package extension. The returned plug-in will be the appropriate type of plugin requested: calling Model.getPlugin() will return an FbcModelPlugin; calling Parameter.getPlugin() will return CompSBasePlugin, etc.

If no such plugin exists, None is returned.

SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
Parameters
nthe index of the plug-in to return.
Returns
the nth plug-in object (the libSBML extension interface) of a package extension. If the index n is invalid, None is returned.
See also
getNumPlugins()
getPlugin()

Method variant with the following signature:
getPlugin(string package)

Returns a plug-in object (extension interface) for an SBML Level 3 package extension with the given package name or URI. The returned plug-in will be the appropriate type of plugin requested: calling Model.getPlugin() will return an FbcModelPlugin; calling Parameter.getPlugin() will return CompSBasePlugin, etc.

If no such plugin exists, None is returned.

SBML Level 3 consists of a Core definition that can be extended via optional SBML Level 3 packages. A given model may indicate that it uses one or more SBML packages, and likewise, a software tool may be able to support one or more packages. LibSBML does not come preconfigured with all possible packages included and enabled, in part because not all package specifications have been finalized. To support the ability for software systems to enable support for the Level 3 packages they choose, libSBML features a plug-in mechanism. Each SBML Level 3 package is implemented in a separate code plug-in that can be enabled by the application to support working with that SBML package. A given SBML model may thus contain not only objects defined by SBML Level 3 Core, but also objects created by libSBML plug-ins supporting additional Level 3 packages.
Parameters
packagethe name or URI of the package.
Returns
the plug-in object (the libSBML extension interface) of a package extension with the given package name or URI.
See also
getPlugin()
def libsbml.SBase.getPrefix (   self)
inherited

Returns the XML namespace prefix of this element.

getPrefix()   string

This reports the XML namespace prefix chosen for this class of object in the current SBML document. This may be an empty string if the component has no explicit prefix (for instance, if it is a core SBML object placed in the default SBML namespace of the document). If it is not empty, then it corresponds to the XML namespace prefix used set the object, whatever that may be in a given SBML document.

Returns
a text string representing the XML namespace prefix.
def libsbml.SBase.getResourceBiologicalQualifier (   self,
  resource 
)
inherited

Returns the MIRIAM biological qualifier associated with the given resource.

getResourceBiologicalQualifier(string resource)   long

In MIRIAM, qualifiers are an optional means of indicating the relationship between a model component and its annotations. There are two broad kinds of annotations: model and biological. The latter kind is used to qualify the relationship between a model component and a biological entity which it represents. Examples of relationships include 'is' and 'has part', but many others are possible. MIRIAM defines numerous relationship qualifiers to enable different software tools to qualify biological annotations in the same standardized way. In libSBML, the MIRIAM controlled-vocabulary annotations on an SBML model element are represented using lists of CVTerm objects, and the the MIRIAM biological qualifiers are represented using valueswhose names begin with BQB_ in the interface class libsbml.

This method searches the controlled-vocabulary annotations (i.e., the list of CVTerm objects) on the present object, then out of those that have biological qualifiers, looks for an annotation to the given resource. If such an annotation is found, it returns the type of biological qualifier associated with that resource as a valuewhose name begins with BQB_ from the interface class libsbml.

Parameters
resourcestring representing the resource; e.g., 'http://www.geneontology.org/#GO:0005892'.
Returns
the qualifier associated with the resource, or BQB_UNKNOWN if the resource does not exist.
Note
The set of MIRIAM biological qualifiers grows over time, although relatively slowly. The values are up to date with MIRIAM at the time of a given libSBML release. The set of values in list of BQB_ constants defined in libsbml may be expanded in later libSBML releases, to match the values defined by MIRIAM at that later time.
def libsbml.SBase.getResourceModelQualifier (   self,
  resource 
)
inherited

Returns the MIRIAM model qualifier associated with the given resource.

getResourceModelQualifier(string resource)   long

In MIRIAM, qualifiers are an optional means of indicating the relationship between a model component and its annotations. There are two broad kinds of annotations: model and biological. The former kind is used to qualify the relationship between a model component and another modeling object. An example qualifier is 'isDerivedFrom', to indicate that a given component of the model is derived from the modeling object represented by the referenced resource. MIRIAM defines numerous relationship qualifiers to enable different software tools to qualify model annotations in the same standardized way. In libSBML, the MIRIAM controlled-vocabulary annotations on an SBML model element are represented using lists of CVTerm objects, and the the MIRIAM model qualifiers are represented using valueswhose names begin with BQM_ in the interface class libsbml.

This method method searches the controlled-vocabulary annotations (i.e., the list of CVTerm objects) on the present object, then out of those that have model qualifiers, looks for an annotation to the given resource. If such an annotation is found, it returns the type of type of model qualifier associated with that resource as a valuewhose name begins with BQM_ from the interface class libsbml.

Parameters
resourcestring representing the resource; e.g., 'http://www.geneontology.org/#GO:0005892'.
Returns
the model qualifier type associated with the resource, or BQM_UNKNOWN if the resource does not exist.
Note
The set of MIRIAM model qualifiers grows over time, although relatively slowly. The values are up to date with MIRIAM at the time of a given libSBML release. The set of values in list of BQM_ constants defined in libsbml may be expanded in later libSBML releases, to match the values defined by MIRIAM at that later time.
def libsbml.SBase.getSBMLDocument (   self,
  args 
)
inherited

Returns the SBMLDocument object containing this object instance.

getSBMLDocument()   SBMLDocument
LibSBML uses the class SBMLDocument as a top-level container for storing SBML content and data associated with it (such as warnings and error messages). An SBML model in libSBML is contained inside an SBMLDocument object. SBMLDocument corresponds roughly to the class SBML defined in the SBML Level 3 and Level 2 specifications, but it does not have a direct correspondence in SBML Level 1. (But, it is created by libSBML no matter whether the model is Level 1, Level 2 or Level 3.)

This method allows the caller to obtain the SBMLDocument for the current object.

Returns
the parent SBMLDocument object of this SBML object.
See also
getParentSBMLObject()
getModel()
def libsbml.SBase.getSBOTerm (   self)
inherited

Returns the integer portion of the value of the 'sboTerm' attribute of this object.

getSBOTerm()   int
Beginning with SBML Level 2 Version 2, objects derived from SBase have an optional attribute named 'sboTerm' for supporting the use of the Systems Biology Ontology. In SBML proper, the data type of the attribute is a string of the form 'SBO:NNNNNNN', where 'NNNNNNN' is a seven digit integer number; libSBML simplifies the representation by only storing the 'NNNNNNN' integer portion. Thus, in libSBML, the 'sboTerm' attribute on SBase has data type int, and SBO identifiers are stored simply as integers.
SBO terms are a type of optional annotation, and each different class of SBML object derived from SBase imposes its own requirements about the values permitted for 'sboTerm'. More details can be found in SBML specifications for Level 2 Version 2 and above.
Returns
the value of the 'sboTerm' attribute as an integer, or -1 if the value is not set.
def libsbml.SBase.getSBOTermAsURL (   self)
inherited

Returns the URL representation of the 'sboTerm' attribute of this object.

getSBOTermAsURL()   string

This method returns the entire SBO identifier as a text string in the form http://identifiers.org/biomodels.sbo/SBO:NNNNNNN'.

SBO terms are a type of optional annotation, and each different class of SBML object derived from SBase imposes its own requirements about the values permitted for 'sboTerm'. More details can be found in SBML specifications for Level 2 Version 2 and above.
Returns
the value of the 'sboTerm' attribute as an identifiers.org URL, or an empty string if the value is not set.
def libsbml.SBase.getSBOTermID (   self)
inherited

Returns the string representation of the 'sboTerm' attribute of this object.

getSBOTermID()   string
Beginning with SBML Level 2 Version 2, objects derived from SBase have an optional attribute named 'sboTerm' for supporting the use of the Systems Biology Ontology. In SBML proper, the data type of the attribute is a string of the form 'SBO:NNNNNNN', where 'NNNNNNN' is a seven digit integer number; libSBML simplifies the representation by only storing the 'NNNNNNN' integer portion. Thus, in libSBML, the 'sboTerm' attribute on SBase has data type int, and SBO identifiers are stored simply as integers.
SBO terms are a type of optional annotation, and each different class of SBML object derived from SBase imposes its own requirements about the values permitted for 'sboTerm'. More details can be found in SBML specifications for Level 2 Version 2 and above.
Returns
the value of the 'sboTerm' attribute as a string (its value will be of the form 'SBO:NNNNNNN'), or an empty string if the value is not set.
def libsbml.Species.getSpatialSizeUnits (   self)

Get the value of the 'spatialSizeUnits' attribute.

getSpatialSizeUnits()   string
Returns
the value of the 'spatialSizeUnits' attribute of this Species object, as a string.
Warning
In versions of SBML Level 2 before Version 3, the class Species included an attribute called 'spatialSizeUnits', which allowed explicitly setting the units of size for initial concentration. This attribute was removed in SBML Level 2 Version 3. LibSBML retains this attribute for compatibility with older definitions of Level 2, but its use is strongly discouraged because it is incompatible with levels and versions of SBML beyond Level 2 Version 2.
def libsbml.Species.getSpeciesType (   self)

Get the type of this Species object object.

getSpeciesType()   string
Returns
the value of the 'speciesType' attribute of this Species as a string.
Note
The 'speciesType' attribute is only available in SBML Level 2 Versions 2–4.
def libsbml.Species.getSubstanceUnits (   self)

Get the value of the 'substanceUnits' attribute.

getSubstanceUnits()   string
Returns
the value of the 'substanceUnits' attribute of this Species, as a string. An empty string indicates that no units have been assigned.
Note
There is an important distinction to be made between no units assigned, and assuming a value without units has any specific unit such as dimensionless. In SBML, default units are never attributed to numbers, and numbers without units are not automatically assumed to have the unit dimensionless. Please consult the relevant SBML specification document for a more in-depth explanation of this topic and the SBML unit system.
See also
isSetSubstanceUnits()
setSubstanceUnits()
def libsbml.Species.getTypeCode (   self)

Returns the libSBML type code for this SBML object.

getTypeCode()   int
LibSBML attaches an identifying code to every kind of SBML object. These are integer constants known as SBML type codes. The names of all the codes begin with the characters SBML_. In the Python language interface for libSBML, the type codes are defined as static integer constants in the interface class libsbml. Note that different Level 3 package plug-ins may use overlapping type codes; to identify the package to which a given object belongs, call the SBase.getPackageName() method on the object.

The exception to this is lists: all SBML-style list elements have the type SBML_LIST_OF, regardless of what package they are from.

Returns
the SBML type code for this object: SBML_SPECIES (default).
Warning
The specific integer values of the possible type codes may be reused by different libSBML plug-ins for SBML Level 3. packages, To fully identify the correct code, it is necessary to invoke both getPackageName() and getTypeCode() (or ListOf.getItemTypeCode()).
See also
getElementName()
getPackageName()
def libsbml.Species.getUnits (   self)

Get the value of the 'units' attribute.

getUnits()   string
Returns
the units of this Species (L1 only).
Note
The 'units' attribute is defined only in SBML Level 1. In SBML Level 2 and Level 3, it has been replaced by a combination of 'substanceUnits' and the units of the Compartment object in which a species is located. In SBML Level 2 Versions 1–2, an additional attribute 'spatialSizeUnits' helps determine the units of the species quantity, but this attribute was removed in later versions of SBML Level 2.
def libsbml.SBase.getURI (   self)
inherited

Gets the namespace URI to which this element belongs to.

getURI()   string

For example, all elements that belong to SBML Level 3 Version 1 Core must would have the URI 'http://www.sbml.org/sbml/level3/version1/core'; all elements that belong to Layout Extension Version 1 for SBML Level 3 Version 1 Core must would have the URI 'http://www.sbml.org/sbml/level3/version1/layout/version1'.

This function first returns the URI for this element by looking into the SBMLNamespaces object of the document with the its package name. If not found, it will then look for the namespace associated with the element itself.

Returns
the URI of this element, as a text string.
See also
getSBMLDocument()
getPackageName()
def libsbml.SBase.getVersion (   self)
inherited

Returns the Version within the SBML Level of the SBMLDocument object containing this object.

getVersion()   long
LibSBML uses the class SBMLDocument as a top-level container for storing SBML content and data associated with it (such as warnings and error messages). An SBML model in libSBML is contained inside an SBMLDocument object. SBMLDocument corresponds roughly to the class SBML defined in the SBML Level 3 and Level 2 specifications, but it does not have a direct correspondence in SBML Level 1. (But, it is created by libSBML no matter whether the model is Level 1, Level 2 or Level 3.)
Returns
the SBML version of this SBML object.
See also
getLevel()
getNamespaces()
def libsbml.Species.hasRequiredAttributes (   self)

Predicate returning True if all the required attributes for this Species object have been set.

hasRequiredAttributes()   bool

The required attributes for a Species object are:

  • 'id' (or 'name' in SBML Level 1)
  • 'compartment'
  • 'initialAmount' (required in SBML Level 1 only; optional otherwise)
  • 'hasOnlySubstanceUnits' (required in SBML Level 3; optional in SBML Level 2)
  • 'boundaryCondition' (required in SBML Level 3; optional in Levels 1 and 2)
  • 'constant' (required in SBML Level 3; optional in SBML Level 2)
Returns
True if the required attributes have been set, False otherwise.
def libsbml.SBase.hasValidLevelVersionNamespaceCombination (   self)
inherited

Predicate returning true if this object's level/version and namespace values correspond to a valid SBML specification.

hasValidLevelVersionNamespaceCombination()   bool

The valid combinations of SBML Level, Version and Namespace as of this release of libSBML are the following:

  • Level 1 Version 2: http://www.sbml.org/sbml/level1
  • Level 2 Version 1: http://www.sbml.org/sbml/level2
  • Level 2 Version 2: http://www.sbml.org/sbml/level2/version2
  • Level 2 Version 3: http://www.sbml.org/sbml/level2/version3
  • Level 2 Version 4: http://www.sbml.org/sbml/level2/version4
  • Level 3 Version 1 Core: http://www.sbml.org/sbml/level3/version1/core
Returns
true if the level, version and namespace values of this SBML object correspond to a valid set of values, false otherwise.
def libsbml.Species.initDefaults (   self)

Initializes the fields of this Species object to 'typical' defaults values.

initDefaults()

The SBML Species component has slightly different aspects and default attribute values in different SBML Levels and Versions. This method sets the values to certain common defaults, based mostly on what they are in SBML Level 2. Specifically:

  • Sets 'boundaryCondition' to False
  • Sets 'constant' to False
  • sets 'hasOnlySubstanceUnits' to False
  • (Applies to Level 3 models only) Sets attribute 'substanceUnits' to mole
def libsbml.SBase.isPackageEnabled (   self,
  pkgName 
)
inherited

Predicate returning True if the given SBML Level 3 package is enabled with this object.

isPackageEnabled(string pkgName)   bool

The search ignores the package version.

Parameters
pkgNamethe name of the package.
Returns
True if the given package is enabled within this object, False otherwise.
See also
isPackageURIEnabled()
def libsbml.SBase.isPackageURIEnabled (   self,
  pkgURI 
)
inherited

Predicate returning True if an SBML Level 3 package with the given URI is enabled with this object.

isPackageURIEnabled(string pkgURI)   bool
Parameters
pkgURIthe URI of the package.
Returns
True if the given package is enabled within this object, False otherwise.
See also
isPackageEnabled()
def libsbml.SBase.isPkgEnabled (   self,
  pkgName 
)
inherited

Predicate returning True if the given SBML Level 3 package is enabled with this object.

isPkgEnabled(string pkgName)   bool

The search ignores the package version.

Parameters
pkgNamethe name of the package.
Returns
True if the given package is enabled within this object, False otherwise.
See also
isPkgURIEnabled()
def libsbml.SBase.isPkgURIEnabled (   self,
  pkgURI 
)
inherited

Predicate returning True if an SBML Level 3 package with the given URI is enabled with this object.

isPkgURIEnabled(string pkgURI)   bool
Parameters
pkgURIthe URI of the package.
Returns
True if the given package is enabled within this object, False otherwise.
See also
isPkgEnabled()
def libsbml.SBase.isSetAnnotation (   self)
inherited

Predicate returning True if this object's 'annotation' subelement exists and has content.

isSetAnnotation()   bool

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Returns
True if a 'annotation' subelement exists, False otherwise.
See also
getAnnotation()
getAnnotationString()
setAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
unsetAnnotation()
def libsbml.Species.isSetBoundaryCondition (   self)

Predicate returning True if this Species object's 'boundaryCondition' attribute is set.

isSetBoundaryCondition()   bool
Returns
True if the 'boundaryCondition' attribute of this Species is set, False otherwise.
def libsbml.Species.isSetCharge (   self)

Predicate returning True if this Species object's 'charge' attribute is set.

isSetCharge()   bool
Returns
True if the 'charge' attribute of this Species is set, False otherwise.
Note
Beginning in SBML Level 2 Version 2, the 'charge' attribute on Species is deprecated and in SBML Level 3 it does not exist at all. Its use strongly discouraged. Its presence is considered a misfeature in earlier definitions of SBML because its implications for the mathematics of a model were never defined, and in any case, no known modeling system ever used it. Instead, models take account of charge values directly in their definitions of species by (for example) having separate species identities for the charged and uncharged versions of the same species. This allows the condition to affect model mathematics directly. LibSBML retains this method for easier compatibility with SBML Level 1.
def libsbml.Species.isSetCompartment (   self)

Predicate returning True if this Species object's 'compartment' attribute is set.

isSetCompartment()   bool
Returns
True if the 'compartment' attribute of this Species is set, False otherwise.
def libsbml.Species.isSetConstant (   self)

Predicate returning True if this Species object's 'constant' attribute is set.

isSetConstant()   bool
Returns
True if the 'constant' attribute of this Species is set, False otherwise.
Note
The attribute 'constant' is only available in SBML Levels 2 and 3. It does not exist on Species in Level 1.
def libsbml.Species.isSetConversionFactor (   self)

Predicate returning True if this Species object's 'conversionFactor' attribute is set.

isSetConversionFactor()   bool
Returns
True if the 'conversionFactor' attribute of this Species is set, False otherwise.
Note
The 'conversionFactor' attribute was introduced in SBML Level 3. It does not exist on Species in SBML Levels 1 and 2.
def libsbml.Species.isSetHasOnlySubstanceUnits (   self)

Predicate returning True if this Species object's 'hasOnlySubstanceUnits' attribute is set.

isSetHasOnlySubstanceUnits()   bool
Returns
True if the 'hasOnlySubstanceUnits' attribute of this Species is set, False otherwise.
Note
The 'hasOnlySubstanceUnits' attribute does not exist in SBML Level 1.
def libsbml.Species.isSetId (   self)

Predicate returning True if this Species object's 'id' attribute is set.

isSetId()   bool
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Returns
True if the 'id' attribute of this SBML object is set, False otherwise.
Note
Because of the inconsistent behavior of this function with respect to assignments and rules, it is recommended that callers use isSetIdAttribute() instead.
See also
getIdAttribute()
setIdAttribute()
unsetIdAttribute()
isSetIdAttribute()
def libsbml.SBase.isSetIdAttribute (   self)
inherited

Predicate returning True if this object's 'id' attribute is set.

isSetIdAttribute()   bool
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Returns
True if the 'id' attribute of this SBML object is set, False otherwise.
See also
getIdAttribute()
setIdAttribute()
unsetIdAttribute()
def libsbml.Species.isSetInitialAmount (   self)

Predicate returning True if this Species object's 'initialAmount' attribute is set.

isSetInitialAmount()   bool
Returns
True if the 'initialAmount' attribute of this Species is set, False otherwise.
Note
In SBML Level 1, Species' 'initialAmount' is required and therefore should always be set. (However, in Level 1, the attribute has no default value either, so this method will not return True until a value has been assigned.) In SBML Level 2, 'initialAmount' is optional and as such may or may not be set.
def libsbml.Species.isSetInitialConcentration (   self)

Predicate returning True if this Species object's 'initialConcentration' attribute is set.

isSetInitialConcentration()   bool
Returns
True if the 'initialConcentration' attribute of this Species is set, False otherwise.
Note
The attribute 'initialConcentration' is only available in SBML Level 2 and 3. It does not exist on Species in Level 1.
def libsbml.SBase.isSetMetaId (   self)
inherited

Predicate returning True if this object's 'metaid' attribute is set.

isSetMetaId()   bool
The optional attribute named 'metaid', present on every major SBML component type, is for supporting metadata annotations using RDF (Resource Description Format). The attribute value has the data type XML ID, the XML identifier type, which means each 'metaid' value must be globally unique within an SBML file. The latter point is important, because the uniqueness criterion applies across any attribute with type ID anywhere in the file, not just the 'metaid' attribute used by SBML—something to be aware of if your application-specific XML content inside the 'annotation' subelement happens to use the XML ID type. Although SBML itself specifies the use of XML ID only for the 'metaid' attribute, SBML-compatible applications should be careful if they use XML ID's in XML portions of a model that are not defined by SBML, such as in the application-specific content of the 'annotation' subelement. Finally, note that LibSBML does not provide an explicit XML ID data type; it uses ordinary character strings, which is easier for applications to support.
Returns
True if the 'metaid' attribute of this SBML object is set, False otherwise.
See also
getMetaId()
setMetaId()
def libsbml.SBase.isSetModelHistory (   self)
inherited

Predicate returning True if this object has a ModelHistory object attached to it.

isSetModelHistory()   bool
Returns
True if the ModelHistory of this object is set, False otherwise.
Note
In SBML Level 2, model history annotations were only permitted on the Model element. In SBML Level 3, they are permitted on all SBML components derived from SBase.
def libsbml.Species.isSetName (   self)

Predicate returning True if this Species object's 'name' attribute is set.

isSetName()   bool
In SBML Level 3 Version 2, the 'id' and 'name' attributes were moved to SBase directly, instead of being defined individually for many (but not all) objects. LibSBML has for a long time provided functions defined on SBase itself to get, set, and unset those attributes, which would fail or otherwise return empty strings if executed on any object for which those attributes were not defined. Now that all SBase objects define those attributes, those functions now succeed for any object with the appropriate level and version.

The 'name' attribute is optional and is not intended to be used for cross-referencing purposes within a model. Its purpose instead is to provide a human-readable label for the component. The data type of 'name' is the type string defined in XML Schema. SBML imposes no restrictions as to the content of 'name' attributes beyond those restrictions defined by the string type in XML Schema.

The recommended practice for handling 'name' is as follows. If a software tool has the capability for displaying the content of 'name' attributes, it should display this content to the user as a component's label instead of the component's 'id'. If the user interface does not have this capability (e.g., because it cannot display or use special characters in symbol names), or if the 'name' attribute is missing on a given component, then the user interface should display the value of the 'id' attribute instead. (Script language interpreters are especially likely to display 'id' instead of 'name'.)

As a consequence of the above, authors of systems that automatically generate the values of 'id' attributes should be aware some systems may display the 'id''s to the user. Authors therefore may wish to take some care to have their software create 'id' values that are: (a) reasonably easy for humans to type and read; and (b) likely to be meaningful, for example by making the 'id' attribute be an abbreviated form of the name attribute value.

An additional point worth mentioning is although there are restrictions on the uniqueness of 'id' values, there are no restrictions on the uniqueness of 'name' values in a model. This allows software applications leeway in assigning component identifiers.

Regardless of the level and version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have names). If the object in question does not posess a 'name' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the name to be set, nor will it read or write 'name' attributes for those objects.

Returns
True if the 'name' attribute of this SBML object is set, False otherwise.
See also
getName()
setName()
unsetName()
def libsbml.SBase.isSetNotes (   self)
inherited

Predicate returning True if this object's 'notes' subelement exists and has content.

isSetNotes()   bool

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

Returns
True if a 'notes' subelement exists, False otherwise.
See also
getNotes()
getNotesString()
setNotes()
setNotes()
appendNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.SBase.isSetSBOTerm (   self)
inherited

Predicate returning True if this object's 'sboTerm' attribute is set.

isSetSBOTerm()   bool
Returns
True if the 'sboTerm' attribute of this SBML object is set, False otherwise.
def libsbml.Species.isSetSpatialSizeUnits (   self)

Predicate returning True if this Species object's 'spatialSizeUnits' attribute is set.

isSetSpatialSizeUnits()   bool
Returns
True if the 'spatialSizeUnits' attribute of this Species is set, False otherwise.
Warning
In versions of SBML Level 2 before Version 3, the class Species included an attribute called 'spatialSizeUnits', which allowed explicitly setting the units of size for initial concentration. This attribute was removed in SBML Level 2 Version 3. LibSBML retains this attribute for compatibility with older definitions of Level 2, but its use is strongly discouraged because it is incompatible with levels and versions of SBML beyond Level 2 Version 2.
def libsbml.Species.isSetSpeciesType (   self)

Predicate returning True if this Species object's 'speciesType' attribute is set.

isSetSpeciesType()   bool
Returns
True if the 'speciesType' attribute of this Species is set, False otherwise.
Note
The 'speciesType' attribute is only available in SBML Level 2 Versions 2–4.
def libsbml.Species.isSetSubstanceUnits (   self)

Predicate returning True if this Species object's 'substanceUnits' attribute is set.

isSetSubstanceUnits()   bool
Returns
True if the 'substanceUnits' attribute of this Species is set, False otherwise.
def libsbml.Species.isSetUnits (   self)

Predicate returning True if this Species object's 'units' attribute is set.

isSetUnits()   bool
Returns
True if the 'units' attribute of this Species is set, False otherwise.
def libsbml.SBase.isSetUserData (   self)
inherited

Predicate returning true or false depending on whether the user data of this element has been set.

isSetUserData()   bool
The user data associated with an SBML object can be used by an application developer to attach custom information to that object in the model. In case of a deep copy, this data will passed as-is. The data attribute will never be interpreted by libSBML.
Returns
boolean, True if this object's user data has been set, False otherwise.
def libsbml.SBase.matchesRequiredSBMLNamespacesForAddition (   self,
  args 
)
inherited

Returns True if this object's set of XML namespaces are a subset of the given object's XML namespaces.

matchesRequiredSBMLNamespacesForAddition(SBase sb)   bool
The SBMLNamespaces object encapsulates SBML Level/Version/namespaces information. It is used to communicate the SBML Level, Version, and (in Level 3) packages used in addition to SBML Level 3 Core. A common approach to using libSBML's SBMLNamespaces facilities is to create an SBMLNamespaces object somewhere in a program once, then hand that object as needed to object constructors that accept SBMLNamespaces as arguments.
Parameters
sban object to compare with respect to namespaces.
Returns
boolean, True if this object's collection of namespaces is a subset of sb's, False otherwise.
def libsbml.SBase.matchesSBMLNamespaces (   self,
  args 
)
inherited

Returns True if this object's set of XML namespaces are the same as the given object's XML namespaces.

matchesSBMLNamespaces(SBase sb)   bool
The SBMLNamespaces object encapsulates SBML Level/Version/namespaces information. It is used to communicate the SBML Level, Version, and (in Level 3) packages used in addition to SBML Level 3 Core. A common approach to using libSBML's SBMLNamespaces facilities is to create an SBMLNamespaces object somewhere in a program once, then hand that object as needed to object constructors that accept SBMLNamespaces as arguments.
Parameters
sban object to compare with respect to namespaces.
Returns
boolean, True if this object's collection of namespaces is the same as sb's, False otherwise.
def libsbml.SBase.removeFromParentAndDelete (   self)
inherited

Removes this object from its parent.

removeFromParentAndDelete()   int

If the parent was storing this object as a pointer, it is deleted. If not, it is simply cleared (as in ListOf objects). This is a pure virtual method, as every SBase element has different parents, and therefore different methods of removing itself. Will fail (and not delete itself) if it has no parent object. This function is designed to be overridden, but for all objects whose parent is of the class ListOf, the default implementation will work.

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.removeTopLevelAnnotationElement (   self,
  args 
)
inherited

Removes the top-level element within the 'annotation' subelement of this SBML object with the given name and optional URI.

removeTopLevelAnnotationElement(string elementName, string elementURI, bool removeEmpty)   int
removeTopLevelAnnotationElement(string elementName, string elementURI)   int
removeTopLevelAnnotationElement(string elementName)   int

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Calling this method allows a particular annotation element to be removed whilst the remaining annotations remain intact.

Parameters
elementNamea string representing the name of the top level annotation element that is to be removed.
elementURIan optional string that is used to check both the name and URI of the top level element to be removed.
removeEmptyif after removing of the element, the annotation is empty, and the removeEmpty argument is true, the annotation node will be deleted (default).
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
replaceTopLevelAnnotationElement()
replaceTopLevelAnnotationElement()
Note
Owing to the way that language interfaces are created in libSBML, this documentation may show methods that define default values for parameters with text that has the form parameter = value. This is not to be intepreted as a Python keyword argument; the use of a parameter name followed by an equals sign followed by a value is only meant to indicate a default value if the argument is not provided at all. It is not a keyword in the Python sense.
def libsbml.SBase.renameMetaIdRefs (   self,
  oldid,
  newid 
)
inherited

Replaces all uses of a given meta identifier attribute value with another value.

renameMetaIdRefs(string oldid, string newid)
In SBML, object 'meta' identifiers are of the XML data type ID; the SBML object attribute itself is typically named metaid. All attributes that hold values referring to values of type ID are of the XML data type IDREF. They are also sometimes informally referred to as 'metaid refs', in analogy to the SBML-defined type SIdRef.

This method works by looking at all meta-identifier attribute values, comparing the identifiers to the value of oldid. If any matches are found, the matching identifiers are replaced with newid. The method does not descend into child elements.

Parameters
oldidthe old identifier.
newidthe new identifier.
def libsbml.Species.renameSIdRefs (   self,
  oldid,
  newid 
)

Replaces all uses of a given SIdRef type attribute value with another value.

renameSIdRefs(string oldid, string newid)
In SBML, object identifiers are of a data type called SId. In SBML Level 3, an explicit data type called SIdRef was introduced for attribute values that refer to SId values; in previous Levels of SBML, this data type did not exist and attributes were simply described to as 'referring to an identifier', but the effective data type was the same as SIdRef in Level 3. These and other methods of libSBML refer to the type SIdRef for all Levels of SBML, even if the corresponding SBML specification did not explicitly name the data type.

This method works by looking at all attributes and (if appropriate) mathematical formulas in MathML content, comparing the referenced identifiers to the value of oldid. If any matches are found, the matching values are replaced with newid. The method does not descend into child elements.

Parameters
oldidthe old identifier.
newidthe new identifier.
def libsbml.Species.renameUnitSIdRefs (   self,
  oldid,
  newid 
)

Replaces all uses of a given UnitSIdRef type attribute value with another value.

renameUnitSIdRefs(string oldid, string newid)
In SBML, unit definitions have identifiers of type UnitSId. In SBML Level 3, an explicit data type called UnitSIdRef was introduced for attribute values that refer to UnitSId values; in previous Levels of SBML, this data type did not exist and attributes were simply described to as 'referring to a unit identifier', but the effective data type was the same as UnitSIdRef in Level 3. These and other methods of libSBML refer to the type UnitSIdRef for all Levels of SBML, even if the corresponding SBML specification did not explicitly name the data type.

This method works by looking at all unit identifier attribute values (including, if appropriate, inside mathematical formulas), comparing the referenced unit identifiers to the value of oldid. If any matches are found, the matching values are replaced with newid. The method does not descend into child elements.

Parameters
oldidthe old identifier.
newidthe new identifier.
def libsbml.SBase.replaceTopLevelAnnotationElement (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

replaceTopLevelAnnotationElement(XMLNode annotation)   int
replaceTopLevelAnnotationElement(string annotation)   int

Each variant is described separately below.


Method variant with the following signature:
replaceTopLevelAnnotationElement(XMLNode annotation)

Replaces the given top-level element within the 'annotation' subelement of this SBML object and with the annotation element supplied.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

This method determines the name of the element to be replaced from the annotation argument. Functionally it is equivalent to calling removeTopLevelAnnotationElement(name) followed by calling appendAnnotation(annotation_with_name), with the exception that the placement of the annotation element remains the same.

Parameters
annotationXMLNode representing the replacement top level annotation.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
removeTopLevelAnnotationElement()
replaceTopLevelAnnotationElement()

Method variant with the following signature:
replaceTopLevelAnnotationElement(string annotation)

Replaces the given top-level element within the 'annotation' subelement of this SBML object and with the annotation element supplied.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

This method determines the name of the element to be replaced from the annotation argument. Functionally it is equivalent to calling removeTopLevelAnnotationElement(name) followed by calling appendAnnotation(annotation_with_name), with the exception that the placement of the annotation element remains the same.

Parameters
annotationstring representing the replacement top level annotation.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
removeTopLevelAnnotationElement()
replaceTopLevelAnnotationElement()
def libsbml.SBase.setAnnotation (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

setAnnotation(XMLNode annotation)   int
setAnnotation(string annotation)   int

Each variant is described separately below.


Method variant with the following signature:
setAnnotation(XMLNode annotation)

Sets the value of the 'annotation' subelement of this SBML object.

The content of annotation is copied, and any previous content of this object's 'annotation' subelement is deleted.

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Call this method will result in any existing content of the 'annotation' subelement to be discarded. Unless you have taken steps to first copy and reconstitute any existing annotations into the annotation that is about to be assigned, it is likely that performing such wholesale replacement is unfriendly towards other software applications whose annotations are discarded. An alternative may be to use SBase.appendAnnotation() or SBase.appendAnnotation().

Parameters
annotationan XML structure that is to be used as the new content of the 'annotation' subelement of this object.
Returns
integer value indicating success/failure of the function. This particular function only does one thing irrespective of user input or object state, and thus will only return a single value:
See also
getAnnotationString()
isSetAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
unsetAnnotation()

Method variant with the following signature:
setAnnotation(string annotation)

Sets the value of the 'annotation' subelement of this SBML object.

The content of annotation is copied, and any previous content of this object's 'annotation' subelement is deleted.

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Call this method will result in any existing content of the 'annotation' subelement to be discarded. Unless you have taken steps to first copy and reconstitute any existing annotations into the annotation that is about to be assigned, it is likely that performing such wholesale replacement is unfriendly towards other software applications whose annotations are discarded. An alternative may be to use SBase.appendAnnotation() or SBase.appendAnnotation().

Parameters
annotationan XML string that is to be used as the content of the 'annotation' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getAnnotationString()
isSetAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
unsetAnnotation()
def libsbml.Species.setBoundaryCondition (   self,
  value 
)

Sets the 'boundaryCondition' attribute of this Species object.

setBoundaryCondition(bool value)   int
Parameters
valueboolean value for the 'boundaryCondition' attribute.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.setCharge (   self,
  value 
)

Sets the 'charge' attribute of this Species object.

setCharge(int value)   int
Parameters
valuean integer to which to set the 'charge' to.
Note
Beginning in SBML Level 2 Version 2, the 'charge' attribute on Species is deprecated and in SBML Level 3 it does not exist at all. Its use strongly discouraged. Its presence is considered a misfeature in earlier definitions of SBML because its implications for the mathematics of a model were never defined, and in any case, no known modeling system ever used it. Instead, models take account of charge values directly in their definitions of species by (for example) having separate species identities for the charged and uncharged versions of the same species. This allows the condition to affect model mathematics directly. LibSBML retains this method for easier compatibility with SBML Level 1.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.setCompartment (   self,
  sid 
)

Sets the 'compartment' attribute of this Species object.

setCompartment(string sid)   int
Parameters
sidthe identifier of a Compartment object defined elsewhere in this Model.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.setConstant (   self,
  value 
)

Sets the 'constant' attribute of this Species object.

setConstant(bool value)   int
Parameters
valuea boolean value for the 'constant' attribute.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The attribute 'constant' is only available in SBML Levels 2 and 3. It does not exist on Species in Level 1.
def libsbml.Species.setConversionFactor (   self,
  sid 
)

Sets the value of the 'conversionFactor' attribute of this Species object.

setConversionFactor(string sid)   int

The string in sid is copied.

Parameters
sidthe new conversionFactor for the Species.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The 'conversionFactor' attribute was introduced in SBML Level 3. It does not exist on Species in SBML Levels 1 and 2.
def libsbml.Species.setHasOnlySubstanceUnits (   self,
  value 
)

Sets the 'hasOnlySubstanceUnits' attribute of this Species object.

setHasOnlySubstanceUnits(bool value)   int
Parameters
valueboolean value for the 'hasOnlySubstanceUnits' attribute.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The 'hasOnlySubstanceUnits' attribute does not exist in SBML Level 1.
def libsbml.Species.setId (   self,
  sid 
)

Sets the value of the 'id' attribute of this Species.

setId(string sid)   int
The string sid is copied.
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Parameters
sidthe string to use as the identifier of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getIdAttribute()
setIdAttribute()
isSetIdAttribute()
unsetIdAttribute()
def libsbml.SBase.setIdAttribute (   self,
  sid 
)
inherited

Sets the value of the 'id' attribute of this SBML object.

setIdAttribute(string sid)   int
The string sid is copied.
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Parameters
sidthe string to use as the identifier of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getIdAttribute()
setIdAttribute()
isSetIdAttribute()
unsetIdAttribute()
def libsbml.Species.setInitialAmount (   self,
  value 
)

Sets the 'initialAmount' attribute of this Species and marks the field as set.

setInitialAmount (float value)   int

This method also unsets the 'initialConcentration' attribute.

Parameters
valuethe value to which the 'initialAmount' attribute should be set.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.setInitialConcentration (   self,
  value 
)

Sets the 'initialConcentration' attribute of this Species and marks the field as set.

setInitialConcentration (float value)   int

This method also unsets the 'initialAmount' attribute.

Parameters
valuethe value to which the 'initialConcentration' attribute should be set.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The attribute 'initialConcentration' is only available in SBML Level 2 and 3. It does not exist on Species in Level 1.
def libsbml.SBase.setMetaId (   self,
  metaid 
)
inherited

Sets the value of the meta-identifier attribute of this SBML object.

setMetaId(string metaid)   int
The optional attribute named 'metaid', present on every major SBML component type, is for supporting metadata annotations using RDF (Resource Description Format). The attribute value has the data type XML ID, the XML identifier type, which means each 'metaid' value must be globally unique within an SBML file. The latter point is important, because the uniqueness criterion applies across any attribute with type ID anywhere in the file, not just the 'metaid' attribute used by SBML—something to be aware of if your application-specific XML content inside the 'annotation' subelement happens to use the XML ID type. Although SBML itself specifies the use of XML ID only for the 'metaid' attribute, SBML-compatible applications should be careful if they use XML ID's in XML portions of a model that are not defined by SBML, such as in the application-specific content of the 'annotation' subelement. Finally, note that LibSBML does not provide an explicit XML ID data type; it uses ordinary character strings, which is easier for applications to support.

The string metaid is copied.

Parameters
metaidthe identifier string to use as the value of the 'metaid' attribute.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getMetaId()
isSetMetaId()
def libsbml.SBase.setModelHistory (   self,
  history 
)
inherited

Sets the ModelHistory of this object.

setModelHistory(ModelHistory history)   int

The content of history is copied, and this object's existing model history content is deleted.

Parameters
historyModelHistory of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
In SBML Level 2, model history annotations were only permitted on the Model element. In SBML Level 3, they are permitted on all SBML components derived from SBase.
def libsbml.Species.setName (   self,
  name 
)

Sets the value of the 'name' attribute of this Species.

setName(string name)   int

The string in name is copied.

Parameters
namethe new name for the SBML object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.setNamespaces (   self,
  xmlns 
)
inherited

Sets the namespaces relevant of this SBML object.

setNamespaces(XMLNamespaces xmlns)   int

The content of xmlns is copied, and this object's existing namespace content is deleted.

The SBMLNamespaces object encapsulates SBML Level/Version/namespaces information. It is used to communicate the SBML Level, Version, and (in Level 3) packages used in addition to SBML Level 3 Core.

Parameters
xmlnsthe namespaces to set.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.setNotes (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

setNotes(XMLNode notes)   int
setNotes(string notes, bool addXHTMLMarkup)   int
setNotes(string notes)   int

Each variant is described separately below.


Method variant with the following signature:
setNotes(string notes, bool addXHTMLMarkup = false)

Sets the value of the 'notes' subelement of this SBML object to a copy of the string notes.

The content of notes is copied, and any existing content of this object's 'notes' subelement is deleted.

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

The following code illustrates a very simple way of setting the notes using this method. Here, the object being annotated is the whole SBML document, but that is for illustration purposes only; you could of course use this same approach to annotate any other SBML component.

1 try:
2  sbmlDoc = SBMLDocument(3, 1)
3 except ValueError:
4  print('Could not create SBMLDocument object')
5  sys.exit(1)
6 
7 note = '<body xmlns='http://www.w3.org/1999/xhtml'><p>here is my note</p></body>'
8 
9 status = sbmlDoc.setNotes(note)
10 if status != LIBSBML_OPERATION_SUCCESS:
11  # Do something to handle the error here.
12  print('Unable to set notes on the SBML document object')
13  sys.exit(1)
Parameters
notesan XML string that is to be used as the content of the 'notes' subelement of this object.
addXHTMLMarkupa boolean indicating whether to wrap the contents of the notes argument with XHTML paragraph (<p>) tags. This is appropriate when the string in notes does not already containg the appropriate XHTML markup.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getNotesString()
isSetNotes()
setNotes()
appendNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
Note
Owing to the way that language interfaces are created in libSBML, this documentation may show methods that define default values for parameters with text that has the form parameter = value. This is not to be intepreted as a Python keyword argument; the use of a parameter name followed by an equals sign followed by a value is only meant to indicate a default value if the argument is not provided at all. It is not a keyword in the Python sense.

Method variant with the following signature:
setNotes(XMLNode notes)

Sets the value of the 'notes' subelement of this SBML object.

The content of notes is copied, and any existing content of this object's 'notes' subelement is deleted.

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

Parameters
notesan XML structure that is to be used as the content of the 'notes' subelement of this object.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getNotesString()
isSetNotes()
setNotes()
appendNotes()
appendNotes()
unsetNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.SBase.setSBOTerm (   self,
  args 
)
inherited

This method has multiple variants; they differ in the arguments they accept.

setSBOTerm(int value)   int
setSBOTerm(string sboid)   int

Each variant is described separately below.


Method variant with the following signature:
setSBOTerm(int value)

Sets the value of the 'sboTerm' attribute.

Beginning with SBML Level 2 Version 2, objects derived from SBase have an optional attribute named 'sboTerm' for supporting the use of the Systems Biology Ontology. In SBML proper, the data type of the attribute is a string of the form 'SBO:NNNNNNN', where 'NNNNNNN' is a seven digit integer number; libSBML simplifies the representation by only storing the 'NNNNNNN' integer portion. Thus, in libSBML, the 'sboTerm' attribute on SBase has data type int, and SBO identifiers are stored simply as integers.
SBO terms are a type of optional annotation, and each different class of SBML object derived from SBase imposes its own requirements about the values permitted for 'sboTerm'. More details can be found in SBML specifications for Level 2 Version 2 and above.
Parameters
valuethe NNNNNNN integer portion of the SBO identifier.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
setSBOTerm()

Method variant with the following signature:
setSBOTerm(string sboid)

Sets the value of the 'sboTerm' attribute by string.

Beginning with SBML Level 2 Version 2, objects derived from SBase have an optional attribute named 'sboTerm' for supporting the use of the Systems Biology Ontology. In SBML proper, the data type of the attribute is a string of the form 'SBO:NNNNNNN', where 'NNNNNNN' is a seven digit integer number; libSBML simplifies the representation by only storing the 'NNNNNNN' integer portion. Thus, in libSBML, the 'sboTerm' attribute on SBase has data type int, and SBO identifiers are stored simply as integers.
SBO terms are a type of optional annotation, and each different class of SBML object derived from SBase imposes its own requirements about the values permitted for 'sboTerm'. More details can be found in SBML specifications for Level 2 Version 2 and above.
Parameters
sboidthe SBO identifier string of the form 'SBO:NNNNNNN'.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
setSBOTerm()
def libsbml.Species.setSpatialSizeUnits (   self,
  sid 
)
setSpatialSizeUnits(string sid)   int
 

(SBML Level 2 Versions 1–2) Sets the 'spatialSizeUnits' attribute of this Species object.

Parameters
sidthe identifier of the unit to use.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Warning
In versions of SBML Level 2 before Version 3, the class Species included an attribute called 'spatialSizeUnits', which allowed explicitly setting the units of size for initial concentration. This attribute was removed in SBML Level 2 Version 3. LibSBML retains this attribute for compatibility with older definitions of Level 2, but its use is strongly discouraged because it is incompatible with levels and versions of SBML beyond Level 2 Version 2.
def libsbml.Species.setSpeciesType (   self,
  sid 
)

Sets the 'speciesType' attribute of this Species object.

setSpeciesType(string sid)   int
Parameters
sidthe identifier of a SpeciesType object defined elsewhere in this Model.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The 'speciesType' attribute is only available in SBML Level 2 Versions 2–4.
def libsbml.Species.setSubstanceUnits (   self,
  sid 
)

Sets the 'substanceUnits' attribute of this Species object.

setSubstanceUnits(string sid)   int
Parameters
sidthe identifier of the unit to use.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.setUnits (   self,
  sname 
)
setUnits(string sname)   int
 

(SBML Level 1 only) Sets the units of this Species object.

Parameters
snamethe identifier of the unit to use.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.toSBML (   self)
inherited

Returns a string consisting of a partial SBML corresponding to just this object.

toSBML()   string
Returns
the partial SBML that describes this SBML object.
Warning
This is primarily provided for testing and debugging purposes. It may be removed in a future version of libSBML.
def libsbml.SBase.toXMLNode (   self)
inherited

Returns this element as an XMLNode.

toXMLNode()   XMLNode
Returns
this element as an XMLNode.
Warning
This operation is computationally expensive, because the element has to be fully serialized to a string and then parsed into the XMLNode structure. Attempting to convert a large tree structure (e.g., a large Model) may consume significant computer memory and time.
def libsbml.SBase.unsetAnnotation (   self)
inherited

Unsets the value of the 'annotation' subelement of this SBML object.

unsetAnnotation()   int

Whereas the SBase 'notes' subelement is a container for content to be shown directly to humans, the 'annotation' element is a container for optional software-generated content not meant to be shown to humans. Every object derived from SBase can have its own value for 'annotation'. The element's content type is XML type 'any', allowing essentially arbitrary well-formed XML data content.

SBML places a few restrictions on the organization of the content of annotations; these are intended to help software tools read and write the data as well as help reduce conflicts between annotations added by different tools. Please see the SBML specifications for more details.

Returns
integer value indicating success/failure of the function. This particular function only does one thing irrespective of user input or object state, and thus will only return a single value:
See also
getAnnotation()
getAnnotationString()
isSetAnnotation()
setAnnotation()
setAnnotation()
appendAnnotation()
appendAnnotation()
def libsbml.Species.unsetBoundaryCondition (   self)

Unsets the 'boundaryCondition' attribute value of this Species object.

unsetBoundaryCondition()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.unsetCharge (   self)

Unsets the 'charge' attribute value of this Species object.

unsetCharge()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
Beginning in SBML Level 2 Version 2, the 'charge' attribute on Species is deprecated and in SBML Level 3 it does not exist at all. Its use strongly discouraged. Its presence is considered a misfeature in earlier definitions of SBML because its implications for the mathematics of a model were never defined, and in any case, no known modeling system ever used it. Instead, models take account of charge values directly in their definitions of species by (for example) having separate species identities for the charged and uncharged versions of the same species. This allows the condition to affect model mathematics directly. LibSBML retains this method for easier compatibility with SBML Level 1.
def libsbml.Species.unsetCompartment (   self)

Unsets the 'compartment' attribute value of this Species object.

unsetCompartment()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.unsetConstant (   self)

Unsets the value of the 'constant' attribute of this Species object.

unsetConstant()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
isSetConstant()
setConstant()
getConstant()
def libsbml.Species.unsetConversionFactor (   self)

Unsets the 'conversionFactor' attribute value of this Species object.

unsetConversionFactor()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The 'conversionFactor' attribute was introduced in SBML Level 3. It does not exist on Species in SBML Levels 1 and 2.
def libsbml.SBase.unsetCVTerms (   self)
inherited

Clears the list of CVTerm objects attached to this SBML object.

unsetCVTerms()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.unsetHasOnlySubstanceUnits (   self)

Unsets the 'hasOnlySubstanceUnits' attribute value of this Species object.

unsetHasOnlySubstanceUnits()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.unsetId (   self)
inherited

Unsets the value of the 'id' attribute of this SBML object.

unsetId()   int
The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier. The data type of 'id' is always SId or a type derived from that, such as UnitSId, depending on the object in question. All data types are defined as follows:
letter ::= 'a'..'z','A'..'Z'
digit  ::= '0'..'9'
idChar ::= letter | digit | '_'
SId    ::= ( letter | '_' ) idChar*
The characters ( and ) are used for grouping, the character * 'zero or more times', and the character | indicates logical 'or'. The equality of SBML identifiers is determined by an exact character sequence match; i.e., comparisons must be performed in a case-sensitive manner. This applies to all uses of SId, SIdRef, and derived types.

Users need to be aware of some important API issues that are the result of the history of SBML and libSBML. Prior to SBML Level 3 Version 2, SBML defined 'id' and 'name' attributes on only a subset of SBML objects. To simplify the work of programmers, libSBML's API provided get, set, check, and unset on the SBase object class itself instead of on individual subobject classes. This made the get/set/etc. methods uniformly available on all objects in the libSBML API. LibSBML simply returned empty strings or otherwise did not act when the methods were applied to SBML objects that were not defined by the SBML specification to have 'id' or 'name' attributes. Additional complications arose with the rule and assignment objects: InitialAssignment, EventAssignment, AssignmentRule, and RateRule. In early versions of SBML, the rule object hierarchy was different, and in addition, then as now, they possess different attributes: 'variable' (for the rules and event assignments), 'symbol' (for initial assignments), or neither (for algebraic rules). Prior to SBML Level 3 Version 2, getId() would always return an empty string, and isSetId() would always return False for objects of these classes.

With the addition of 'id' and 'name' attributes on SBase in Level 3 Version 2, it became necessary to introduce a new way to interact with the attributes more consistently in libSBML to avoid breaking backward compatibility in the behavior of the original 'id' methods. For this reason, libSBML provides four functions (getIdAttribute(), setIdAttribute(), isSetIdAttribute(), and unsetIdAttribute()) that always act on the actual 'id' attribute inherited from SBase, regardless of the object's type. These new methods should be used instead of the older getId()/setId()/etc. methods unless the old behavior is somehow necessary. Regardless of the Level and Version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have identifiers). If the object in question does not posess an 'id' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the identifier to be set, nor will it read or write 'id' attributes for those objects.

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getIdAttribute()
setIdAttribute()
isSetIdAttribute()
unsetIdAttribute()
def libsbml.SBase.unsetIdAttribute (   self)
inherited

Unsets the value of the 'id' attribute of this SBML object.

unsetIdAttribute()   int

Most (but not all) objects in SBML include two common attributes: 'id' and 'name'. The identifier given by an object's 'id' attribute value is used to identify the object within the SBML model definition. Other objects can refer to the component using this identifier.

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getIdAttribute()
setIdAttribute()
isSetIdAttribute()
def libsbml.Species.unsetInitialAmount (   self)

Unsets the 'initialAmount' attribute value of this Species object.

unsetInitialAmount()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.unsetInitialConcentration (   self)

Unsets the 'initialConcentration' attribute value of this Species object.

unsetInitialConcentration()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The attribute 'initialConcentration' is only available in SBML Level 2 and 3. It does not exist on Species in Level 1.
def libsbml.SBase.unsetMetaId (   self)
inherited

Unsets the value of the 'metaid' attribute of this SBML object.

unsetMetaId()   int
The optional attribute named 'metaid', present on every major SBML component type, is for supporting metadata annotations using RDF (Resource Description Format). The attribute value has the data type XML ID, the XML identifier type, which means each 'metaid' value must be globally unique within an SBML file. The latter point is important, because the uniqueness criterion applies across any attribute with type ID anywhere in the file, not just the 'metaid' attribute used by SBML—something to be aware of if your application-specific XML content inside the 'annotation' subelement happens to use the XML ID type. Although SBML itself specifies the use of XML ID only for the 'metaid' attribute, SBML-compatible applications should be careful if they use XML ID's in XML portions of a model that are not defined by SBML, such as in the application-specific content of the 'annotation' subelement. Finally, note that LibSBML does not provide an explicit XML ID data type; it uses ordinary character strings, which is easier for applications to support.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.unsetModelHistory (   self)
inherited

Unsets the ModelHistory object attached to this object.

unsetModelHistory()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
In SBML Level 2, model history annotations were only permitted on the Model element. In SBML Level 3, they are permitted on all SBML components derived from SBase.
def libsbml.Species.unsetName (   self)

Unsets the value of the 'name' attribute of this Species object.

unsetName()   int
In SBML Level 3 Version 2, the 'id' and 'name' attributes were moved to SBase directly, instead of being defined individually for many (but not all) objects. LibSBML has for a long time provided functions defined on SBase itself to get, set, and unset those attributes, which would fail or otherwise return empty strings if executed on any object for which those attributes were not defined. Now that all SBase objects define those attributes, those functions now succeed for any object with the appropriate level and version.

The 'name' attribute is optional and is not intended to be used for cross-referencing purposes within a model. Its purpose instead is to provide a human-readable label for the component. The data type of 'name' is the type string defined in XML Schema. SBML imposes no restrictions as to the content of 'name' attributes beyond those restrictions defined by the string type in XML Schema.

The recommended practice for handling 'name' is as follows. If a software tool has the capability for displaying the content of 'name' attributes, it should display this content to the user as a component's label instead of the component's 'id'. If the user interface does not have this capability (e.g., because it cannot display or use special characters in symbol names), or if the 'name' attribute is missing on a given component, then the user interface should display the value of the 'id' attribute instead. (Script language interpreters are especially likely to display 'id' instead of 'name'.)

As a consequence of the above, authors of systems that automatically generate the values of 'id' attributes should be aware some systems may display the 'id''s to the user. Authors therefore may wish to take some care to have their software create 'id' values that are: (a) reasonably easy for humans to type and read; and (b) likely to be meaningful, for example by making the 'id' attribute be an abbreviated form of the name attribute value.

An additional point worth mentioning is although there are restrictions on the uniqueness of 'id' values, there are no restrictions on the uniqueness of 'name' values in a model. This allows software applications leeway in assigning component identifiers.

Regardless of the level and version of the SBML, these functions allow client applications to use more generalized code in some situations (for instance, when manipulating objects that are all known to have names). If the object in question does not posess a 'name' attribute according to the SBML specification for the Level and Version in use, libSBML will not allow the name to be set, nor will it read or write 'name' attributes for those objects.

Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
See also
getName()
setName()
isSetName()
def libsbml.SBase.unsetNotes (   self)
inherited

Unsets the value of the 'notes' subelement of this SBML object.

unsetNotes()   int

The optional SBML element named 'notes', present on every major SBML component type, is intended as a place for storing optional information intended to be seen by humans. An example use of the 'notes' element would be to contain formatted user comments about the model element in which the 'notes' element is enclosed. Every object derived directly or indirectly from type SBase can have a separate value for 'notes', allowing users considerable freedom when adding comments to their models.

The format of 'notes' elements must be XHTML 1.0. To help verify the formatting of 'notes' content, libSBML provides the static utility method SyntaxChecker.hasExpectedXHTMLSyntax(); however, readers are urged to consult the appropriate SBML specification document for the Level and Version of their model for more in-depth explanations. The SBML Level 2 and 3 specifications have considerable detail about how 'notes' element content must be structured.

Returns
integer value indicating success/failure of the function. This particular function only does one thing irrespective of user input or object state, and thus will only return a single value:
See also
getNotesString()
isSetNotes()
setNotes()
setNotes()
appendNotes()
appendNotes()
SyntaxChecker.hasExpectedXHTMLSyntax()
def libsbml.SBase.unsetSBOTerm (   self)
inherited

Unsets the value of the 'sboTerm' attribute of this SBML object.

unsetSBOTerm()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.unsetSpatialSizeUnits (   self)

Unsets the 'spatialSizeUnits' attribute value of this Species object.

unsetSpatialSizeUnits()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Warning
In versions of SBML Level 2 before Version 3, the class Species included an attribute called 'spatialSizeUnits', which allowed explicitly setting the units of size for initial concentration. This attribute was removed in SBML Level 2 Version 3. LibSBML retains this attribute for compatibility with older definitions of Level 2, but its use is strongly discouraged because it is incompatible with levels and versions of SBML beyond Level 2 Version 2.
def libsbml.Species.unsetSpeciesType (   self)

Unsets the 'speciesType' attribute value of this Species object.

unsetSpeciesType()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
Note
The attribute 'speciesType' is only available in SBML Level 2 Versions 2–4.
def libsbml.Species.unsetSubstanceUnits (   self)

Unsets the 'substanceUnits' attribute value of this Species object.

unsetSubstanceUnits()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.Species.unsetUnits (   self)

Unsets the 'units' attribute value of this Species object.

unsetUnits()   int
Returns
integer value indicating success/failure of the function. The possible values returned by this function are:
def libsbml.SBase.unsetUserData (   self)
inherited

Unsets the user data of this element.

unsetUserData()   int
The user data associated with an SBML object can be used by an application developer to attach custom information to that object in the model. In case of a deep copy, this data will passed as-is. The data attribute will never be interpreted by libSBML.
Returns
integer value indicating success/failure of the function. The possible values returned by this function are: